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AbstractThis paper presents a factor graph-basedmodel that takes comorbidities and
clinical measurements as inputs and predicts intensive care unit (ICU) admissions
3 days and 7 days in advance for hospitalized COVID-19 patients. We applied the
proposed model on a COVID-19 cohort from a large medical center in Chicago (with
records fromMarch 2020 to August 2021). We used the first occurrence of the Delta
variant in theU.S., February 2021, as the threshold to divide the dataset into pre-Delta
data (533 patients) and post-Delta data (56 patients). Our model demonstrated 0.82
AUC on the pre-Delta data and 0.87 AUC on the post-Delta data in 7-day predictions.
Our contribution is a model that (i) explains relationships between different clinical
features and provides interpretations for ICU admissions, (ii) outperforms existing
methods for 7-day predictions, and (iii) maintains more robustness than existing
models in predictions under the influence of the Delta variant. The proposed model
could be used as a predictive tool in clinical practice to help clinicians in decision-
making by predicting which patients will need ICU support in the future.
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1.1 Introduction

The spread of COVID-19 has recently been influenced by vaccines [1], which have
stymied the spread of the disease, and the Delta variant [2], which has an altered
pathology progression and has become the dominant variant of the virus [3]. These
changes have presented new challenges in predicting COVID-19 disease progression
among hospitalized patients, and prediction systems that support clinical decision-
making will be crucial for managing patients’ health to reduce fatality rates. In
this paper, we present a probabilistic graphical model (PGM) for inferring ICU
admissions in hospitalizedCOVID-19 patients.Wemake 3-day and 7-day predictions
on ICU admissions based on a patient’s comorbidities and clinical measurements
(including laboratory tests and vitals). Specifically, the output labels are binary,
indicating whether a patient will be admitted to the ICU or not.
Several prognostic models were developed during the early phases of the pan-

demic [4, 5, 6, 7], including ones that used logistic regression, support vector ma-
chine, decision tree, and random forest approaches. Although these models per-
formed well on the pre-Delta data, their performance on post-Delta data has not
been evaluated. The altered pathology progression of the Delta variant is likely to
affect the performance of models that were trained on pre-Delta data significantly.
Moreover, the data available from the post-Delta period are limited, which poses
additional challenges for training models with a large number of parameters.
To address those challenges, we developed a factor graph (FG) model [8], a

type of PGM that has found success in a variety of applications, such as clinical
diagnosis [9, 10] and cyber-security [11, 12]. FGs allow us to make predictions based
on longitudinal data. Central to the FG model are factor functions (FFs), which are
mathematical formulae that encode the relationships among clinical measurements,
previous ICU admission status, and future ICU admission status. These relationships
are inspired by domain knowledge and learned from statistical analysis, which can
be reliably done with limited training data. In addition, FGs are more interpretable
due to their graphical representation, which is beneficial in a clinical setting.
We evaluated our model with data from 589 patients hospitalized at the University

of Illinois Hospital, a large academic hospital in Chicago. The data contain electronic
health records (EHR) from March 2020 to August 2021, with 533 patients in the
pre-Delta data and 56 patients in the post-Delta data. To demonstrate our model’s
performance in predicting ICU admissions and the model’s robustness against the
Delta variant, we evaluated the model on both the pre-Delta data and post-Delta data.
Because of the limited size of the post-Delta data, we trained the model only on the
pre-Delta data. The key results are as follows:

• Our FGmodel outperforms state-of-the-art methods in predicting ICU admissions
7 days in advance (with 0.82 AUC on pre-Delta data, and 0.87 AUC on post-Delta
data) and has comparable performance on 3-day predictions (with 0.81 AUC on
pre-Delta data, and 0.73 AUC on post-Delta data).

• The proposed model’s performance is more robust than the state-of-the-art meth-
ods to altered pathology progression in the post-Delta period. While the AUC and
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accuracy of most competing methods drop substantially on the post-Delta data,
our model’s AUC and accuracy changes for post-Delta data stabilize within small
ranges (9.9% to 13.5%).

• The FFs in our model explained the relationship between greater severity of co-
morbidities and higher risk of ICU admission for COVID-19 patients. Moreover,
we also identified the change in predictive biomarkers for different prediction
time windows.

• Our model can be used as a tool in clinical practice to suggest appropriate
placement of patients, either in regular beds or the ICU. The flexibility of our
model’s FF constructions and its ability to work from limited training data allows
it to be easily adapted for other diseases and new viruses with small data samples.

1.2 Model

In this section, we discuss how we constructed the FG model. We first provide an
overview of the model’s structure and define the variables. Then, we explain the
methods used for variable selection and factor function construction. Finally, we
explain how we perform prediction with the inference algorithms.

1.2.1 Model Overview

The proposed model (see Fig. 1.1) builds on FGs to predict the ICU admissions of
COVID-19 patients 𝑑 days in advance (𝑑 = 3 and 𝑑 = 7). An FG [8] is represented
by 𝐺 = (𝑉 ∪ 𝐹, E), where 𝑉 = {𝑣1, ..., 𝑣𝑛} are the variable nodes, 𝐹 = { 𝑓1, ..., 𝑓𝑚}
are the factor nodes, and E = {(𝑣𝑝 , 𝑓𝑞) |𝑣𝑝 ∈ 𝑉𝑞 , 𝑓𝑞 ∈ 𝐹} are the edges connecting
each factor 𝑓𝑞 to its neighbors 𝑣𝑝 ∈ 𝑉𝑞 , where 𝑉𝑞 ⊆ 𝑉 . The FG is a bipartite graph
between variables 𝑉 and factors 𝐹, where the factor nodes 𝑓𝑞 ∈ 𝐹 represent FFs and
are non-negative. While the values of some nodes 𝐸 ⊆ 𝑉 are observed (or provided
in the data), the values of other nodes 𝑆 ⊆ 𝑉 are hidden (and need to be inferred),
where 𝑉 = 𝐸 ∪ 𝑆.
When the above FGmodel is applied to ICU admissions for hospitalized COVID-

19 patients, the observed events are 𝐸 = 𝐸𝐶 ∪ 𝐸𝐿 (where 𝐸𝐶 = {𝑒𝑐𝑖 |𝑐𝑖 ∈ 𝐶}
are comorbidities and 𝐸𝐿 = {𝑒𝑙 𝑗 ,𝑡 |𝑙 𝑗 ∈ 𝐿, 𝑡 ∈ 𝑇𝑛} are lab/vital measurements),
and the hidden states 𝑆 = {𝑠𝑡 |𝑡 ∈ 𝑇𝑛} are the future ICU admissions 𝑑 days in
advance. 𝑇𝑛 = {𝑡1, ..., 𝑡𝑛} are the timestamps of the observed events. (The intervals
in this model have the granularity of a single day because labs/vitals are drawn on
a daily basis.) The probabilities of the hidden states are estimated using the belief
propagation (BP) algorithm [13] with a factorized joint probability distribution of
𝐸 and 𝑆:

𝑃(𝐸, 𝑆) = 1
𝑍

∏
𝑎

𝑓𝑎 (𝑉𝑎), (1.1)
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where 𝑉𝑎 = (𝐸𝑎 ∪ 𝑆𝑎), 𝑉𝑎 ⊆ 𝐸 ∪ 𝑆, and 𝐸 ∪ 𝑆 =
⋃

𝑎 𝑉𝑎. 𝑍 is a constant to
normalize the product of factor functions and ensure that 𝑃 is a valid probability
distribution. While the BP algorithms only compute the probability of each hidden
state, a threshold 𝑝 was learned from the training data to achieve the highest accuracy
for the prediction task. If the probability of ICU admission is greater than 𝑝, then the
future state is predicted to be ICU admission. Otherwise, it is predicted to be No ICU
admission. The threshold 𝑝 is the best value that separates the estimated posterior
probability distributions of both the ICU class and the No ICU class, evaluated by
the F1 score.

Fig. 1.1 Approach Overview. (A) For each comorbidity, lab/vital distributions are plotted with
respect to the label (ICU/No ICU). The thresholds that best separate the distribution are computed.
(B) Thresholds are used to categorize the lab/vital values and calculate the joint probabilities to
construct FFs. (C) FGs are constructed by connecting FFs with observed events and hidden states.
Predictions are made based on a threshold for the hidden state probabilities learned from the training
data. 𝐶 = {𝑐1, ..., 𝑐6 } is a set of comorbidity nodes; 𝐿𝐼,𝑡𝑘 =

⋃
𝑖∈𝐼 𝐿𝑖,𝑡𝑘 is a union of the sets of

predictive biomarkers 𝐿𝑖 for the patient’s comorbidities 𝑐𝑖 ∈ 𝐶𝐼 ; 𝑓𝐶 = { 𝑓𝑐1 , ..., 𝑓𝑐6 } is a set of
Comorbidity FFs; 𝑓𝐶𝐼 ,𝐿𝐼

=
⋃

𝑖∈𝐼 (
⋃

𝑙 𝑗∈𝐿𝑖
𝑓𝑐𝑖 ,𝑙 𝑗 ) is a union of the Bio FFs.

1.2.2 Variable Selection

The input features of the model consist of comorbidities, laboratory tests, and vitals.
We chose 6 comorbidities that are common in the U.S. [14] as the inputs in our FG
model, including hypertension, chronic obstructive pulmonary disease (COPD), type
2 diabetes, renal disease, heart failure, and obesity, represented as 𝐶 = {𝑐1, ..., 𝑐6}.
We converted lab/vital values into binary values to facilitate probabilistic model

construction (see Fig. 1.1.A). More specifically, we plotted the distributions of
labs/vitals across the hidden states (ICU/No ICU) and found the threshold that
best distinguishes the two distributions (that of the ICU states, and that of the No
ICU states), when the F1 score is used as the evaluation metric. We then converted
the lab/vital values to binary depending on whether their values were higher or
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Table 1.1 The formulas to construct factor functions (FFs).
FF(s) Equation Comments

Trans. 𝑓𝑡𝑟𝑎𝑛𝑠 (𝑠𝑎 , 𝑠𝑏) =
∑

Φ,𝑡∈𝑇𝑛−1
1{𝑠𝑡𝑘 =𝑠𝑎 ,𝑠𝑡𝑘+1 =𝑠𝑏 }∑

Φ,𝑡𝑘′ ∈𝑇𝑛−1 ,𝑠
′
𝑎 ,𝑠′

𝑏
∈𝐵
1{𝑠𝑡𝑘′ =𝑠

′
𝑎 ,𝑠𝑡𝑘′+1 =𝑠

′
𝑏
}
Each entry is the normalized fre-
quency of a type of transition.

Comorb. 𝑓𝑐𝑖 (𝑐, 𝑠) =
∑
Φ

1{𝑒𝑐𝑖 =𝑐,𝑠𝑡0 =𝑠}∑
Φ,𝑐′∈𝐵,𝑠′∈𝐵

1{𝑒𝑐𝑖 =𝑐
′ ,𝑠𝑡0 =𝑠

′}
Each entry is the joint probability
that the patient would (or would not)
have comorbidity 𝑐𝑖 with initial hid-
den state 𝑠.

Bio 𝑓𝑐𝑖 ,𝑙 𝑗 (𝑙, 𝑠) =

∑
Φ𝑐𝑖 ,𝑡∈𝑇𝑛−1

1{𝑒𝑙 𝑗 ,𝑡 =𝑙,𝑠𝑡 =𝑠}∑
Φ𝑐𝑖 ,𝑡∈𝑇𝑛−1 ,𝑙

′ ,𝑠′∈𝐵
1{𝑒𝑙 𝑗 ,𝑡 =𝑙

′ ,𝑠𝑡 =𝑠′}
Each entry is the joint probability that
patients with comorbidity 𝑐𝑖 will have
labs/vitals 𝑙 𝑗 above or below the se-
lected threshold with hidden state 𝑠.

∗ Abbreviations: Trans., Transition; Comorb., Comorbidity; Φ, all patients; Φ𝑐𝑖 , all patients with
comorbidity 𝑐𝑖 ; 𝑇𝑛−1 = {𝑡0, ..., 𝑡𝑛−1 }; 𝐵 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}. Constraints: 𝑐, 𝑙, 𝑠, 𝑠𝑎 , 𝑠𝑏 ∈ 𝐵.

lower than the thresholds. We introduced the influence of comorbidities on ICU
admission by analyzing the lab/vital values conditioned on the comorbidity (i.e., we
studied the lab/vital distributions for each comorbidity, and also for patients without
comorbidities). For the purpose of dimensionality reduction, for each comorbidity,
we selected only 3 labs/vitals to use in constructing the FGs;we called them predictive
biomarkers. This process was developed in consultation with our clinical co-authors.
The predictive biomarkers were the 3 labs/vitals with the highest F1 scores for each
type of comorbidity; the 3 labs/vitals with the highest F1 scores were also selected
for patients without comorbidities.

1.2.3 Factor Function Construction

We designed 3 kinds of FFs to explain the relationship among comorbidities, labo-
ratory tests, vital measurements, and ICU admission after 𝑑 days, including (i) the
Transition FF, 𝑓𝑡𝑟𝑎𝑛𝑠; (ii) the Comorbidity FFs, 𝑓𝑐𝑖 ; and (iii) the Bio FFs, 𝑓𝑐𝑖 ,𝑙 𝑗 . The
mathematical formulae for calculating the FFs are listed in Table 1.1.
Transition FF. The Transition FF 𝑓𝑡𝑟𝑎𝑛𝑠 (𝑠𝑡𝑘 , 𝑠𝑡𝑘+1 ) measures the probability that
hidden state 𝑠𝑡𝑘 will transition to hidden state 𝑠𝑡𝑘+1 , 𝑃(𝑠𝑡𝑘 , 𝑠𝑡𝑘+1 ).
Comorbidity FFs. The Comorbidity FFs 𝑓𝑐𝑖 (𝑒𝑐𝑖 , 𝑠𝑡0 ) capture the joint probabilities
of the patients’ comorbidities and their initial hidden state 𝑠𝑡0 , 𝑃(𝑒𝑐𝑖 , 𝑠𝑡0 ).
Bio FFs. To incorporate the impact of comorbidities in each step of inference, we
designed the Bio FFs 𝑓𝑐𝑖 ,𝑙 𝑗 (𝑒𝑙 𝑗 ,𝑡 , 𝑠𝑡 ) to capture the joint probabilities of the pa-
tients’ lab/vital values and their hidden state at time 𝑡 given their comorbidities,
𝑃(𝑒𝑙 𝑗 ,𝑡 , 𝑠𝑡 |𝑒𝑐𝑖 ). 𝑙 𝑗 ∈ 𝐿𝑖 . 𝑒𝑙 𝑗 ,𝑡 are the binary lab/vital values categorized using the
thresholds chosen in Sect. 1.2.2. The FFs of the predictive biomarkers are indepen-
dent of each other, so the model can tolerate missing values for some of the predictive
biomarkers when inferring the hidden states.
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1.2.4 Inference Algorithms

Each patient’s comorbidity information was first collected upon his or her admission
to the hospital. Thus, the comorbidity nodes were first added as the initial events
𝑒𝑐𝑖 , and a corresponding initial hidden state 𝑠𝑡0 was inferred with the Comorbidity
FFs 𝑓𝑐𝑖 . Then, during the patient’s stay in the hospital, his/her labs/vitals were
measured. Depending on the comorbidities 𝐶𝐼 ⊆ 𝐶 he/she had, measurements of
the corresponding predictive biomarkers 𝑙 𝑗 ∈ 𝐿𝑖 , where 𝑖 ∈ 𝐼, were added to the
FG as events 𝑒𝑙 𝑗 ,𝑡𝑘 . A corresponding hidden state 𝑠𝑡𝑘 was also added. The Bio FFs
𝑓𝑐𝑖 ,𝑙 𝑗 were connected to events 𝑒𝑙 𝑗 ,𝑡𝑘 , 𝑒𝑐𝑖 and to the hidden state 𝑠𝑡𝑘 . The Transition
FF 𝑓𝑡𝑟𝑎𝑛𝑠 was connected to the previous hidden state 𝑠𝑡𝑘−1 and the new hidden state
𝑠𝑡𝑘 . The probabilities of the hidden states 𝑆, denoted by 𝑃𝑆 = {𝑝𝑡 |𝑡 ∈ 𝑇𝑛}, were
computed using the BP algorithm, for which 𝑝𝑡 is the probability that hidden state 𝑠𝑡
is ICU.When 𝑝𝑡 is greater than 𝑝, the hidden state is predicted to be ICU. Otherwise,
it is predicted to be No ICU.

1.3 Experimental Setup

In this section, we describe our experimental setup and how we evaluated the pro-
posed model, including the cohort characteristics and the evaluation methods.

1.3.1 Dataset

We validated the proposed model on a COVID-19 dataset collected from the Uni-
versity of Illinois Hospital in Chicago, Illinois. This dataset contains EHRs of 589
patients who were hospitalized with COVID-19 between March 2020 and August
2021, with 533 patients in the pre-Delta data and 56 in the post-Delta data. De-
mopgraphics and comorbidity information of the patients are listed in Table 1.2.
When the data contain multiple measurements of the same lab/vital within the same
day, we used only the latest lab/vital value for that day. Since we want to predict the
patients’ ICU admissions 𝑑 days in advance (𝑑 = 3 and 𝑑 = 7), we treated future ICU
admission status as a hidden state to be inferred using current clinical measurements.

1.3.2 Model Evaluation

We evaluated the model performance with an 80:20 split into training and testing
sets on the pre-Delta data. Since the events and states are time-dependent, it would
not have made sense to randomly split the data; doing so might result in use of future
data points to train the model and predict data points in the past. Thus, the training set
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Table 1.2 Demographics and comorbidities of hospitalized COVID-19 patients.
pre-Delta post-Delta

𝑑 = 3 𝑑 = 7 𝑑 = 3 𝑑 = 7
Total∗, 𝑁 364 175 24 11
Age, 𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑄𝑅) 57 (45–68) 60 (49–71) 58 (44–66) 60 (46–66)
Sex, 𝑁 (%) Female 193 (53.0%) 84 (48.0%) 13 (54.1%) 6 (54.6%)

Male 171 (47.0%) 91 (52.0%) 11 (45.8%) 5 (45.5%)
Comorbidity, 𝑁 (%) N/A 229 (62.9%) 107 (61.1%) 11 (45.8%) 6 (54.5%)

Hypertension 80 (22.0%) 40 (22.9%) 8 (33.3%) 3 (27.3%)
COPD 12 (3.3%) 4 (2.3%) 0 (0.0%) 0 (0.0%)
Type 2 diabetes 66 (18.1%) 32 (18.3%) 6 (25.0%) 4 (36.4%)
Renal disease 35 (9.6%) 19 (10.9%) 5 (20.8%) 2 (18.2%)
Heart failure 12 (3.3%) 5 (2.9%) 1 (4.2%) 0 (0.0%)
Obesity 13 (3.6%) 6 (3.4%) 0 (0.0%) 0 (0.0%)

∗Only patients with at least one lab/vital measurement were included in our analysis. Hence, our
dataset was reduced to 388 patients in total. Depending on the prediction tasks (𝑑 = 3 or 𝑑 = 7),
the number of valid patients in each dataset varies. Abbreviations: N/A, no comorbidity; COPD,

chronic obstructive pulmonary disease.

consists of the records of the first 80% of the patients admitted during the pre-Delta
period, and the testing set consists of the records of the remaining 20% of the pre-
Delta-period patients. We performed variable selection and trained the FFs as well as
the threshold 𝑝 on the training set. The accuracy of ICU admission predictions was
evaluated on both the testing set and the post-Delta data, using AUC and accuracy
as the metrics. We compared the prediction performance of the proposed framework
with that of other state-of-the-art methods, which used logistic regression, support
vector machine, decision tree, and random forest approaches [4, 5, 6]. Furthermore,
to evaluate the value of using previous ICU admission status to predict future ICU
admission status, we assessed the proposed model without the Transition FFs, i.e.,
the case when the previous hidden state does not share an edge with the current
hidden state (w/o Tr.).

1.4 Results

In this section, we discuss the experimental results for the FGmodel in making 3-day
and 7-day predictions on ICU admissions of hospitalized COVID-19 patients. We
provide details on the predictive biomarkers of each comorbidity and their thresholds,
and we explain the model performance on different prediction tasks.
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Table 1.3 Predictive biomarkers for ICU admission given the comorbidities.
Comorbidity (𝑐𝑖) 𝑑 = 3 𝑑 = 7

𝑁 Labs/Vitals (𝐿𝑖) ICU Admission 𝑁 Labs/Vitals (𝐿𝑖) ICU Admission
ALB ≤ 3.4 g/dL CRP > 32.4 mg/L

N/A 229 %LYMPH ≤ 15.0 % 107 ALB ≤ 3.5 g/dL
RBC ≤ 4.2M/uL AST > 23.0 U/L
ALB ≤ 3.4 g/dL %LYMPH ≤ 34.0 %

Hypertension 80 WBC > 5.8 K/uL 40 WBC > 3.3 K/uL
RBC ≤ 4.6M/uL RBC ≤ 4.6M/uL
CRP > 19.8 mg/L - -

COPD 12 WBC > 6.0 K/uL 4 - -
%MONO ≤ 11.1 % - -
RBC ≤ 4.6M/uL CRP > 55.8 mg/L

Type 2 diabetes 66 CRP > 129.6 mg/L 32 WBC > 5.0 K/uL
HGB ≤ 11.6 g/d ALB ≤ 3.5 g/dL
WBC > 6.6 K/uL WBC > 4.1 K/uL

Renal disease 35 ALB ≤ 3.4 g/dL 19 AST > 16.0 U/L
%MONO ≤ 8.3 % ALB ≤ 3.5 g/dL
HGB ≤ 11.6 g/dL - -

Heart failure 12 RBC ≤ 3.9M/uL 5 - -
WBC > 7.1 K/uL - -
ALB ≤ 3.8 g/dL - -

Obesity 13 %LYMPH ≤ 17.5 % 6 - -
BUN > 16.1 mg/dL - -

∗Abbreviations: N/A, no comorbidity; COPD, chronic obstructive pulmonary disease; ALB,
albumin; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CRP, C-reactive protein;
HGB, hemoglobin; %LYMPH, lymphocyte percentage; %MONO, monocytes percentage; RBC,

red blood cell; WBC, white blood cell.

1.4.1 Predictive Biomarkers

We selected 3 predictive biomarkers for each group, including the group without
comorbidities, and the groups with each comorbidity (see Table 1.3). The dataset for
7-day prediction does not contain enough patients (𝑁 < 10) with the comorbidities of
COPD, heart failure, and obesity, so we merged those patients into the group without
comorbidities. From the results, we found that some of the predictive biomarkers are
indicators of the severity of the comorbidities.Moreover, we found that the predictive
biomarkers differ between the 3-day and 7-day predictions. These findings can help
us better understand the critical factors for predicting ICU admission of hospitalized
COVID-19 patients and design the factor functions using domain knowledge.

1.4.2 Model Validation

We validated the ability of our model to infer ICU admissions for hospitalized
COVID-19 patients after 𝑑 days (𝑑 = 3 and 𝑑 = 7) given their comorbidities, labora-
tory tests, and vital measurements. Themodel’s performancewas comparedwith that
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Table 1.4 Prediction performance. Changes in performance w.r.t. pre-Delta period are provided in
parentheses.

Method pre-Delta post-Delta
𝑑 = 3 𝑑 = 7 𝑑 = 3 𝑑 = 7

AUC ACC AUC ACC AUC ACC AUC ACC
Proposed 0.81 0.74 0.82 0.75 0.73 (-9.9%) 0.64 (-13.5%) 0.87 (+6.1%) 0.66 (-12.0%)

Proposed w/o Tr. 0.76 0.68 0.69 0.75 0.67 (-11.8%) 0.62 (-8.8%) 0.67 (-2.9%) 0.62 (-17.3%)
LR 0.85 0.77 0.83 0.74 0.62 (-27.1%) 0.57 (-26.0%) 0.57 (-31.3%) 0.57 (-23.0%)
SVM 0.86 0.80 0.82 0.72 0.66 (-23.3%) 0.58 (-27.5%) 0.57 (-30.5%) 0.50 (-30.6%)

Random Forest 0.88 0.79 0.69 0.70 0.70 (-20.5%) 0.50 (-36.7%) 0.73 (+5.8%) 0.57 (-18.6%)
Decision Tree 0.63 0.63 0.54 0.65 0.60 (-4.8%) 0.53 (-15.9%) 0.71 (+9.2%) 0.67 (+3.1%)
∗The best AUC/ACC in each column is in bold. Abbreviations: Tr., Transition factor function;
AUC, area under the ROC curve; ACC, accuracy; LR, logistic regression; SVM, support vector

machine.

of several state-of-the-art models (see Table 1.4). Compared to the existing methods,
our model achieved the best performance for 7-day predictions and comparable per-
formance on 3-day predictions. Moreover, the proposed model outperformed the FG
model without Transition FF, demonstrating that a combination of past and current
observations improves prediction performance. Our model also demonstrated better
robustness in prediction for data affected by the Delta variant; it had a relatively
small decrease (9.9% to 13.5%) in performance on the post-Delta data relative to
pre-Delta data, while most of the other methods (listed in Table 1.4) showed a large
decline. Nevertheless, the contribution of the post-Delta data versus the pre-Delta
data requires a deeper level of analysis than this paper provides. Specifically, we
believe a molecular-level analysis is necessary [15, 16].

Summary. The success of our model is due to its ability to integrate past
state/observations and current observations tomake predictions. The decrease in pre-
diction performance of the proposed model without the Transition FF demonstrates
the importance of temporal information in prediction. The existing state-of-the-art
methods do not take into account temporal variables and have lower prediction
accuracy.

1.5 Limitations and Future Work

One limitation of our work is that we only constructed the factor functions with joint
probabilities supported by statistical analysis and have not experimented with more
sophisticated factor functions. For example, we could include domain knowledge
from clinical experts to construct multivariate factor functions that better explain
the relationships between the variables. Second, the proposed model only considers
current lab/vital measurements, not patterns/trends in past measurements, when
making predictions.
Future work will extend the model to capture the temporal trend, i.e., the rate of

change in the lab/vital measurements, of the events. In addition, performing hyper-
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parameter tuning to emphasize different weights among the factor functions may
improve the prediction performance and demonstrate the contributions of different
factors. The model will be implemented as a toolset to provide advice to triaging
physicians. Subsequent work will incorporate the impact of vaccines and emerging
mutations automatically as a learning paradigm.

1.6 Conclusion

We proposed a factor graph-based framework that predicts ICU admissions of hospi-
talized COVID-19 patients 𝑑 days in advance. Our model demonstrates comparable
and better performance than the state-of-the-art machine learning methods on 3-day
and 7-day predictions, respectively. The relationships between comorbidities and
labs/vitals captured by the model shed light on understanding ICU admissions for
COVID-19, for which greater severity of comorbidities introduces a higher risk of
ICU admissions. Most importantly, the model’s prediction performance is robust for
the post-Delta data.
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