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Abstract — Cloud computing in its many forms has become the 
key computing-infrastructure that supports business and more 
recently governmental computing across the globe.  With its 
geographical spread and value proposition comes the need to 
provide guaranteed level of availability in the infrastructure 
and in its services. Multicore processing, virtualization, 
distributed storage systems and an overarching management 
framework that enable a Cloud, offer a plethora of possibilities 
to provide high availability using commodity systems.  Herein 
lie the opportunities and challenges discussed in this paper. 
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I.  INTRODUCTION 
Cloud computing has become increasingly important to 

many businesses and organizations. However, delivering a 
higher level of availability has been one of the biggest 
challenges for this computing paradigm. As this new 
technology is deployed on the large scale, the likelihood of 
incidents has progressively increased with the last few years 
witnessing several spectacular incidents (as exemplified in 
section II). 

Multiple technologies such as multicore processor 
architectures, virtual machines, and storage systems have 
emerged as enabling technologies for cloud computing. 
Cloud computing is a model that truly brings-in the 
advances in these technologies to provide computing as a 
service. Multicore processors and storage system are used to 
build the cloud computing infrastructure, whereas the virtual 
machines form the basis for the cloud computing platform.  

This paper briefly reviews and critiques the state-of-the-
art techniques for enhancing the dependability of cloud 
computing and provides our view of the challenges in 
deploying high-availability cloud infrastructures. We 
associate the challenges with different layers in a multi-
layered cloud architecture. The key challenges outlined in 
the paper include the following:  

(i) Multicore processors potentially bring in natural 
redundancy at the processing level. Several standard 
techniques, e.g., turning off a faulty core, static and dynamic 
sparing have been proposed to exploit to tolerate hard and 
soft errors. However, many of such techniques, e.g., core 
salvaging, are papers or simulated designs and need to be 
thoroughly validated in the context of the value they bring 
to the overall cloud infrastructure. 

(ii) Virtualization introduces an additional separation 
between the low-level hardware and high-level applications. 
However, it also brings new failure modes to the interfaces 

between the hypervisor, hardware, and operating system, 
e.g., error propagation between guest system and the 
hypervisor. Directed effort is required to ensure fault/error 
containment and checkpoint consistency if checkpointing is 
used to keep the VM snapshot for rapid recovery. 

(iii) Data storage driven availability continues to be a 
significant challenge.  With the wide geographical spread of 
the cloud, opportunities for partitioning and inconsistency in 
the data are not in-significant. While approximation 
methods are used to achieve data consistency and reducing 
the performance impact, there is need for sound approaches 
to determine the tradeoff between consistency and 
availability in real environments.  

(iv) Cloud infrastructure and service assessment and 
validation methods are greatly lacking.  The cloud’s massive 
scale demands metrics and sound methods for measurement, 
modeling, and analysis to obtain trusted assessment results.   

II. CLOUD OUTAGES 
We start our discussion by highlighting representative 

examples of cloud outages.  These outages did not only 
affect the cloud availability, they also forced cloud 
providers to make important design changes in the cloud 
infrastructure. These are the valuable lessons for 
constructing the next generation of highly available and 
secure clouds. 

A. Microsoft Azure 
During a routine operating system upgrade on March 13, 

2009, the deployment service within Windows Azure began 
to slow down due to networking issues. This caused a large 
number of servers to time out and fail. 

Applications running only as a single instance (i.e., 
without replication) shut down when the corresponding 
server went down. Very few applications running multiple 
instances failed, although some were degraded due to one 
instance being down. In addition, the ability to perform 
management tasks from the web portal appeared unavailable 
for many applications due to the Fabric Controller being 
loaded with work during the serialized recovery process. 

To prevent such occurrences in the future, Microsoft has 
been fixing the network issues. It is refining and tuning 
recovery algorithms to ensure handling malfunctions 
quickly and gracefully. For continued availability during 
upgrades, application owners are encouraged to deploy their 
application with multiple instances. The second instance of 
an application is not counted against quota limits to allow 
customers to run two instances of each application. 
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B. Amazon S3 
The 8-hour outage of Amazon services on July 20, 2008, 

was caused by a single bit error in messages communicated 
(using a gossip protocol) between the servers. In their 
postmortem analysis, system engineers at Amazon 
determined that “there were a handful of messages ... that 
had a single bit corrupted such that the message was still 
intelligible, but the system state information was incorrect. 
We use MD5 checksums throughout the system, for example, 
to prevent, detect, and recover from corruption that can 
occur during receipt, storage, and retrieval of customers' 
objects. However, we didn’t have the same protection in 
place to detect whether this particular internal state 
information had been corrupted. As a result, when the 
corruption occurred, we didn’t detect it and it spread 
throughout the system....” [1]. 

Amazon decided to add one more layer of checksum to 
protect the stored internal state information.  

C. BitBucket 
On October 3, 2009, BitBucket (https://bitbucket.org/) 

experienced 16+ hours of downtime due to two consecutive 
DDoS attacks targeted at the network interfaces on Amazon 
EBS (Elastic Block Store) service for storage used with EC2 
instances. Such a problem could have been quickly resolved 
if the incidents were promptly diagnosed given sufficient 
visibility to the network traffic. The real issue is the 
multilevel administration of cloud services. 

For BitBucket system administrators, the network traffic 
on the physical servers is a black box. Consequently, the 
administrators cannot do anything at the layers they cannot 
reach. The only solution is to rely on Amazon’s support. 
However, after 6 hours, even with urgent request tickets and 
phone calls, Amazon’s best advice was that EBS is a 
“shared network resource” and therefore performance would 
vary. Only afterward did Amazon acknowledge the 
problems with the service and work with BitBucket to 
resolve the problem. 

It was determined that BitBucket was under a massive-
scale DDoS attack using UDP packets. Amazon simply 
blocked the UDP traffic to resolve the problem. On the next 
day, another DDoS using TCP packets targeted BitBucket. 
But this time it took only two hours for Amazon and 
BitBucket to resolve the problem.  

D. How can research help? 
Failure patterns similar to the S3 failure were observed 

in an error-‐injection based experimental analysis [2] of the 
Ensemble Group Communication System (GCS), a robust 
communication layer for distributed dependable 
applications. The study shows that about 5–6% of 
application failures are due to an error escaping the GCS 
error-‐containment mechanism and manifesting as silence 
data corruption. It is important to note that although the 
percentage of the observed silence data corruption is 
relatively small, such errors do constitute an impediment to 
achieving high dependability because recovery from these 
failures can involve significant system downtime. 

Validation of such large-scale cloud computing 
deployments is always challenging, yet it is an interesting 
opportunity for the research community. An example of 
work in this direction is CloudVal [3], a fault injection 
framework designed to validate the dependability of cloud 
virtualization infrastructure. The paper presents a case study 
using a set of representative fault models, such as transient 
faults (system sensitivity to soft errors), guest misbehavior 
faults (possibility of error propagation from guest system to 
hypervisor), performance faults (potential of race 
conditions), and maintenance faults (turning on/off selected 
hardware resources, such as the CPU).  The study uncovers 
several defects in the implementation of KVM and XEN 
hypervisors.  

In the following sections, along with discussing the 
underlying cloud technologies, we examine some of the 
limitations of current technologies and the root causes of 
dependability problems. TABLE 1 summarizes our discussion.  

III. DEPENDABILITY OF MULTICSORE PROCESSORS 
Recent advancements in manufacturing technology have 

led to development of multi-core processors and CPU 
performance enhancement techniques. The reduction in the 
size of individual gates allows putting more transistors into 
a single integrated circuit die. Partitioning the available 
transistors into multiple cores limits the power consumption 
and reduces heat dissipation only to those cores that are 
currently active. These architectures demand new reliability 
techniques to ensure correct operations. 

TABLE 1: SUMMARY OF TECHNIQUES AND CHALLENGES THAT AFFECT  CLOUD DEPENDABILITY 
Cloud	  layer	   Dependability	  Techniques	   Comments	  

Multicore	  
Processor 

Permanent failure tolerance 
• Core disabling 
• Core salvaging: at ISA, 

microarchitecture, or 
software layer 

Transient error tolerance: 
DMR or TMR using 
• Static core binding 
• Dynamic core binding 

• Need techniques to cope with both hard and transient errors 
• Introduces complexity in the architecture 
• Limited use in cloud (using commodity hardware) 
• High error rate due to high CPU utilization 

Virtual	  
Machine 

• Monitoring at hypervisor layer 
• VM Checkpoint and Rollback 
• VM Migration 

• New failure modes at hypervisor 
• Failure propagation: guest to host; host to management system 
• Minimize checkpoint corruption and overhead 
• Semantic gap between hypervisor and guest system 

Storage	  
System 

• Amazon Dynamo 
• Google Datastore (uses Paxos to support replication) 

• Trade-offs between consistency and availability 
• Testing/benchmarking challenges 

 



A. Permanent failure tolerance in multicore processors 
Permanent (hardware) failures in processors have 

become more prevalent due to increases in core area and in 
the number of cores. Several high-level techniques have 
been proposed for tolerating such errors in multicore 
architectures. Besides the option to disable the faulty core, 
other advanced techniques, such as core salvaging, core 
virtualization, and core cannibalization, attempt to use 
working sections of a faulty core to improve overall chip 
performance. TABLE 2 summarizes and critiques the key 
concepts behind this work.  

B. Transient error tolerance in multicore processors 
Smaller device sizes do reduce the probability of a strike 

from cosmic radiation on an individual device, they also 
reduce the charge required for a charged particle to flip the 
state and cause a single event upset. In addition, the 
increasing clock frequency of the processor increases the 
possibility of an upset in the combinational logic to be 
latched by a flip-flop. These trends in multicore necessitate 
transient error tolerance in these processors.  

On the positive side, multicore architectures bring the 
possibility of supporting hardware redundancy in both a 
static and dynamic manner. TABLE 3 summarizes two 
common core-binding techniques for transient error 
tolerance in multicore architectures. 

As an example of redundancy at the core level, IBM 
provided multiple levels of error detection and recovery for 
the G5 and G6 processors, starting from protecting the 
memory arrays on the chip and going to chip-level 
techniques in a multichip module (MCM). Multiple 
processor cores are interconnected to form an MCM. A 
special processor on the MCM is designated as the system 
processor. In case of a failure of one of the processors, its 
state is migrated to another idle processor in the MCM; this 

is called Transparent Processor Sparing. This approach 
requires an efficient mechanism to determine the state to be 
checkpointed and to capture that state periodically. Using 
multicore processors in the context of an application such as 
cloud computing would present the challenge of developing 
more sophisticated models for core-level checkpointing.  

C. Challenges of using multicores in the cloud 
Multicore processors are the power behind cloud 

computing. Challenges in exploiting the potential 
redundancies offered by multi-core technologies include: 
• Increasing levels of integration at the node level to 

produce large computing clusters prohibits (or makes it 
expensive) the straightforward application of replication 
techniques at the system level. 

• Increasing CPU usage leads to higher error rates in 
memory [13]. More rigorous study is needed to evaluate 
how this issue affects the aging of cloud hardware. 

• Most reliability techniques at the processor architecture 
level need specialized hardware, but cloud computing 
uses commodity multicore processors. Furthermore, 
many of these techniques are in early stages of 
descriptions and may have yet-to-be identified issues in 
implementation and, in assessing the real improvement 
in availability they bring for the added complexity.  

• There is a need for a framework to effectively combine 
the tolerance techniques for hard and transient errors.  

IV. DEPENDABILITY OF VIRTUAL MACHINES 
The use of virtual machine (VM) based systems 

introduces the hypervisor between the operating system and 
the hardware. The relationship between the hypervisor, also 
called the virtual machine monitor (VMM), and the guest 
operating system is analogous to the traditional relationship 
between the operating system and the application processes 
running on it. 

TABLE 2: A TAXONOMY OF MULTICORE TECHNIQUES TO TOLERATE PERMANENT FAILURES 
Technique Brief Description Comments 

Core Disabling Core must be disabled due to permanent failure. Cannot utilize the functional part of the core 
Architectural Core 
Salvaging (e.g., [5]) 

Every core is utilized as a fault-free core to execute the part of 
the ISA that it can execute without any fault. On an error, state 
is transferred to a core that has been predetermined to be able 
to execute the faulty instruction. 

Utilizes partially damaged cores; introduces 
hardware complexity to salvage cores; state 
transferring is expensive 

Microarchitectural 
Core Salvaging (e.g., 
Core Cannibalization 
[7]) 

Cores are viewed at the granularity of pipeline stages in 
lending resources to other cores in the event of a failure in any 
stage of a core. This improves lifetime chip performance by 
enabling more cores to be functional. 

More hardware complexity due to micro-
architectural connections and redundancy; 
cannot cover all the instructions (according to 
analysis of nonreplicated instructions in [5]) 

Software-based Core 
Salvaging (e.g., Core 
Virtualization [6])	  

System-level software virtualizes a set of partially faulty cores 
to provide logically correct virtual cores for application 
execution. 

High performance overhead due to instruction 
emulation in software 

 

TABLE 3: A TAXONOMY OF MULTICORE TECHNIQUES TO TOLERATE TRANSIENT ERRORS 
Technique Brief Description Comments 

Static	  Core	  
Binding 

Cores are assigned as spares statically, and an 
entire core is disabled upon fault in the core 

� Any permanent failure makes a pair of cores unavailable 
� Two cores in the pair have to run at the speed of the slower 
core (difference in the core speeds could be due to process 
variation) 

Dynamic	  Core	  
Binding	  [4] 

Spare cores are allocated dynamically based on the 
allowable network configuration, and an entire 
core is disabled upon a fault in the core 

� Complexity on the core interconnected network 
� Requires more sophisticated models for core-level 
checkpointing 

 



A. Virtual machine based dependability techniques 
1) Fault and failure detection 
VMs provide a software layer between OS and hardware 

and enables monitoring of the behavior of the guest system. 
Vigilant [14] is an initial effort that applies machine 
learning to detect VM failures based on the correlation of 
events generated by monitors at the hypervisor layer. 
Intrusion detection systems (IDS) are moving toward out-
of-host implementations, in which the hypervisor layer 
becomes an attractive option [15].   

Monitoring at the hypervisor layer enables failure/attack 
isolation and hence, independent reporting of the observed 
incidents from the outside, without the possibility of being 
corrupted/manipulated by the failing guest system.  

2) Recovery 
Virtualization encapsulates each complete guest system 

into a virtual machine and provides a convenient way to 
capture snapshots of the system state. Therefore, checkpoint 
and rollback are the primary recovery mechanisms in 
virtualization environment. TABLE 4 lists the existing 
mechanisms of VM checkpointing. 

In the first category of VM checkpoint, the VM is 
stopped completely to save its state in persistent storage, 
and then the VM resumes. This approach incurs a large 
system downtime during the checkpoint. 

In the second category (e.g., CEVM [8] and VNsnap 
[9]), VM live migration and copy-on-write are employed to 
create replica images of VMs with low overhead.  Then the 
image is written to disk in the background or by the separate 
physical node. This disk-based VM checkpointing is not 
scalable, as it stresses the storage system when many VM 
checkpoints need to be written at the same time. In addition, 
the checkpoint is susceptible to corruption due the low-
frequency updating. 

The last two categories are the high-frequency VM 
checkpointing based on live migration (e.g., Remus [10]) 
and incremental checkpoint in main memory (e.g., VM-
µCheckpoint [11]). These checkpoint schemes cannot 
tolerate latent errors, since the checkpoint might contain 
dormant faults. A hierarchical architecture combining high-
frequency, incremental checkpointing and low-frequency, 

disk-based checkpointing is proposed in [11]. This approach 
reduces checkpointing corruption and performance 
overhead, but it still achieves latent error tolerance. 

B. Challenges of using virtualization in the cloud 
Although there has been substantial progress in 

improving VM checkpointing, it is still challenging to 
minimize checkpoint performance overhead, checkpoint 
corruption, and checkpoint inconsistency in a seamless way 
in the cloud infrastructure.  

The non-uniform, dynamic geographic distribution of the 
nodes in the current cloud-computing environment violates 
the assumptions of traditional distributed systems regarding 
communication overhead. Legacy techniques such as 
synchronous and asynchronous checkpointing already incur 
significant overhead and cannot be applied naïvely in the 
new scenario without investigation. Added to that are the 
high and nondeterministic costs that result from the dynamic 
nature of the distributed system.  

Recent studies [3] have shown that VMs introduce new 
failure modes at the interface between the hypervisor, the 
hardware, and the operating system. The study [3] of 
hypervisor resiliency to errors revealed defects in the 
implementations of both KVM and XEN hypervisors. These 
defects can significantly affect the availability and 
maintainability of the cloud. For example, turning on 
CPUs/cores may cause hypervisor failure (e.g., crash of the 
KVM-hypervisor when turning on a CPU core), or memory 
corruptions in a single VM can cause the cloud management 
system to hang.  

The major technical challenge in implementing 
monitoring and recovery mechanisms at the hypervisor level 
is the semantic gap between the guest system and the low-
level hypervisor. The semantic gap prevents the hypervisor 
from interpreting the behavior of the guest system from the 
set of observable events and states at the hypervisor’s point 
of view. To address this problem, virtual machine 
introspection techniques [12] have been introduced. The 
current techniques use the knowledge of the internal 
structure of the guest system to extract its behavior. For 
example, Linux kernels manage processes by maintaining a 
list of task_struct data structure, which can be used to obtain 
the list of the running processes in the guest system. 

TABLE 4: CATEGORIES OF EXISTING MECHANISMS FOR VM CHECKPOINTING 
Mechanism Brief Description	   Comments	  

Stop-and-Save  Stops a VM completely, and saves its 
state to persistent storage 

• Large system downtime 
• Provided by all major VMM systems 

Low-Freq (interval >1h) 
based on live migration 
(e.g., CEVM, VNsnap) 

Creates a VM replica on a remote node 
via live migration, then the remote node 
writes the replica to disk 

• Significant recomputation during recovery, as checkpoint 
frequency is low 
• Large overhead (maintain full replicas for a protected VM) 

High-Freq (interval 
10~1000 ms) based on 
live migration (e.g., 
Remus) 

Maintains a VM replica on a separate 
physical node via live migration, and 
fails-over upon a failure 

• Large overhead while migrating latest updates to the remote 
node continuously (~50% overhead for 50ms checkpoint 
interval) 
• Fail-stop assumption 

High-Freq (interval 
10~1000 ms) based on 
incremental checkpointing 
(e.g., VM-µCheckpoint) 

Maintains high frequency (intervals <1s) 
incremental checkpoint of dirty pages in 
main-memory; recovers from the stored 
checkpoint in the same process context 

• Small overhead (6.3% for SPEC06, 17.5% for Apache) 
• Reduced likelihood of checkpoint corruption 
• High recovery overhead when suffering latent faults (must 
recover from the disk-based checkpoint) 

 



The fundamental limitation of this approach is its 
dependence on the invariants of the guest system, mostly of 
the guest operating system. Therefore, the implementation 
of this approach must be adjusted whenever the used 
invariants change. For example, the location and structure of 
the task_struct vary in different versions of the Linux 
kernel, so the introspection tools have to be customized 
accordingly to operate correctly. In addition, significant 
effort is often required to obtain the meaningful OS 
invariants. The developers and maintainers of these tools 
need to have a deep understanding of the internal 
implementation of the interested systems. Unfortunately, 
this is almost impossible in case of a closed-sourced OS like 
any version of Windows OS.  

V. DEPENDABILITY OF THE STORAGE SYSTEM 
The storage system is an important component in cloud 

system stacks. Enterprise organizations expect high 
availability to be ensured by the storage system, particularly 
with respect to production data. To meet these requirements, 
storage systems become more complex, leading to potential 
reliability problems. In this section, we briefly present 
examples (summarized in TABLE 5) of how storage systems 
in the commercial cloud overcome these challenges. 

A. Amazon Dynamo 
Dynamo is a highly available key-value storage system 

for the Amazon online store. Dynamo employs the principle 
of eventual consistency (weak consistency) to achieve better 
availability. This section discusses the trade-off decision 
and techniques to achieve high availability. 
• Data partitioning using consistent hashing. To distribute 

the workload and ensure consistency, Dynamo stores 
data in a logical hash-ring. A hash-ring consists of 
nodes, in which each node is responsible for storing a 
range of keys. When read or write requests arrive, a hash 
(key) is calculated to identify the appropriate node for 
accessing the associated value. 

• Achieving eventual consistency using replication and 
resolving data conflicts using a vector clock. Each 
key/value pair is replicated on the replica nodes. Since 
the rings are logically formed, different nodes in 
different datacenters can be placed on one logical ring. 
Even when one datacenter is destroyed, Dynamo is still 
able to recover data from replicas in other datacenters. 
Using logical vector timestamping, clients are able to 
resolve potential conflicts in the replicas at read time. 

• Failure detection and membership management using 
Gossip messages. To detect failure promptly, Dynamo 
uses a distributed message exchange protocol called 

Gossip. Each node maintains a view containing the 
health status of its neighbor nodes. When a failure 
occurs, the node directly connected to failed node knows 
first; it then gossips a failure event to other nodes in its 
view. Next, these nodes continue to propagate the failure 
event to other nodes in their views.  

B. Google Datastore for App Engine 
Using master/slave replication, Google chose to 

prioritize performance and read consistency over 
availability by asynchronously replicating data from the 
master datacenter to the slave. However, this architecture 
performs poorly in some situations, such as: 
• Unstable clusters might cause the master and its slave to 

be out of sync. In this case, the system must switch to 
read-only periods to synchronize the master and the 
slave. This consequently results in write-unavailability 
periods for the users. 

• In the unplanned downtime, it is possible for the user to 
lose write operations that occur near this period. 
These issues become more severe as the service grows. 

After two years from initial deployment, Google App 
Engine had experienced serious performance degradation 
and several long service outages. 

To solve this problem, Google had implemented High 
Redundancy Datastore (HRD) service. The HRD is able to 
tolerate planned maintenance and is highly resilient to 
unplanned infrastructure issues. However, both Google and 
their customers have to pay for this level of availability. 
Similarly to Amazon’s Dynamo, HRD sacrifices 
performance and consistency to achieve higher availability, 
as its write latency increases and read consistency decreases. 

One of the key technologies in HRD is the Paxos 
consensus algorithm [17], which enables HRD to 
synchronize data across datacenters in real time. The Paxos 
algorithm is used to reach the agreement on a single value in 
the presence of failures. 

C. Challenges of Storage Systems in the Cloud 
Data storage systems must effectively manage increasing 

volumes of data, while striving to maintain the availability 
and consistency of the stored data.  The challenges include: 

Achieving scalability. Given rapidly growing volumes of 
data, storage systems must be able to scale to customer 
demand. While traditional relational database management 
systems (RDBMS) provide rich functionalities and maintain 
ACID (atomicity, consistency, isolation, durability) 
properties, it takes a lot of effort to scale these systems to 
the cloud environment. Recent systems, such as Amazon 
Dynamo and Google Datastore, trade the functionalities of 
traditional RDBMS for scalability and availability. 

TABLE 5: EXAMPLES OF CLOUD STORAGE SYSTEMS 
System Brief Description Comments 

Amazon 
Dynamo 

A highly available key-value storage system that 
powers Amazon store. Dynamo’s design concepts 
have influenced dozens of new database systems. 

• Membership management is at scales of thousands of machines 
(recall the Amazon outage because of gossip messages).  
• Resolving data inconsistency is the developers’ responsibility. 

Google 
Datastore 

A schema-less object datastore with a query engine 
and atomic transactions. 

• Legacy applications with complex requirements have to readjust 
their data representation to fit with Datastore’s model. 

 



Improving performance. Recently, some storage systems 
have elected to use solid state drives or RAM memory to 
enhance performance [16].  To further improve 
performance, both the storage layer and the processing layer 
require more advanced optimization techniques.  

Developing and deploying failure detection on a large 
scale. At many current clouds’ scales, failure is the norm 
rather than the exception. Failure may happen at any layer, 
from physical storage devices, to file system drivers, to the 
network layer. As the Amazon S3 incident (in section II) 
exemplifies, it is challenging to effectively coordinate 
failure detectors to ensure coverage and timely detection. 
Furthermore, automating a part of the recovery process is 
required to reduce operational costs and system downtime.  

VI. CLOUD INFRASTRUCTURE AND SERVICE ASSESSMENT 
Evaluation of cloud services is difficult from the 

customer’s standpoint. Real-world behavior of cloud 
services may differ from the service level agreement. This 
section discusses metrics for benchmarking cloud services, 
highlighting key challenges of evaluating these metrics. 

Performance.  Performance metrics are usually stated in 
the service level agreement. Common performance metrics 
are response time, throughput, and others. One may measure 
these metrics by running a test using representative data. 
However, to simulate peak requests on a large scale, such as 
requests coming in from all over the world, is a big 
challenge to performance evaluation. 

Consistency. In cloud, it is common practice to trade off 
consistency for availability. Due to the distributed nature of 
cloud computing, data are often replicated to data centers at 
different geographic locations. A proper consistency 
evaluation should initiate tests from different locations. 

Availability. Availability is frequently defined in the 
service level agreement. Current cloud services provide a 
health dashboard to present status of services to customers. 
However, these dashboards’ update intervals may not meet 
customers’ needs in monitoring cloud services. Further, 
unavailable cloud services are rare, and significant time is 
required to quantify cloud availability. 

Fault Tolerance. Since cloud systems are often built on 
top of commodity hardware, failure is a norm. A challenge 
is - how to evaluate the fault tolerance of the cloud in 
operational setting. It is difficult to accurately emulate 
physical hardware failures in cloud computing facilities or 
to simulate a large-scale disaster, such as a tornado or flood. 

Cost.  Choosing the right cloud provider and the right 
type of service to maximize return on investment is difficult. 
One may estimate the cost-effectiveness of different cloud 
services by projecting their application requirements when 
signing a service level agreement. 

VII. CONCLUSION 
This paper attempted to critique succinctly the key 

techniques and techniques challenges building high 

availability into a cloud infrastructure, with focus on three 
enabling technologies: multi-core architecture, virtual 
machine, and the storage system. 
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