
Toward a High Availability Cloud: Techniques and Challenges

Cuong Pham, Phuong Cao, Zbigniew Kalbarczyk, Ravishankar K. Iyer
Center for Reliable and High-Performance Computing

University of Illinois at Urbana-Champaign
1308 W. Main Street, Urbana, IL 61801, USA
{pham9, pcao3, kalbarcz, rkiyer}@illinois.edu

Abstract — Cloud computing in its many forms has become the
key computing-infrastructure that supports business and more
recently governmental computing across the globe. With its
geographical spread and value proposition comes the need to
provide guaranteed level of availability in the infrastructure
and in its services. Multicore processing, virtualization,
distributed storage systems and an overarching management
framework that enable a Cloud, offer a plethora of possibilities
to provide high availability using commodity systems. Herein
lie the opportunities and challenges discussed in this paper.

Keywords-component: Cloud Computing, Multicore, Virtual
Machine, Availability

I. INTRODUCTION
Cloud computing has become increasingly important to

many businesses and organizations. However, delivering a
higher level of availability has been one of the biggest
challenges for this computing paradigm. As this new
technology is deployed on the large scale, the likelihood of
incidents has progressively increased with the last few years
witnessing several spectacular incidents (as exemplified in
section II).

Multiple technologies such as multicore processor
architectures, virtual machines, and storage systems have
emerged as enabling technologies for cloud computing.
Cloud computing is a model that truly brings-in the
advances in these technologies to provide computing as a
service. Multicore processors and storage system are used to
build the cloud computing infrastructure, whereas the virtual
machines form the basis for the cloud computing platform.

This paper briefly reviews and critiques the state-of-the-
art techniques for enhancing the dependability of cloud
computing and provides our view of the challenges in
deploying high-availability cloud infrastructures. We
associate the challenges with different layers in a multi-
layered cloud architecture. The key challenges outlined in
the paper include the following:

(i) Multicore processors potentially bring in natural
redundancy at the processing level. Several standard
techniques, e.g., turning off a faulty core, static and dynamic
sparing have been proposed to exploit to tolerate hard and
soft errors. However, many of such techniques, e.g., core
salvaging, are papers or simulated designs and need to be
thoroughly validated in the context of the value they bring
to the overall cloud infrastructure.

(ii) Virtualization introduces an additional separation
between the low-level hardware and high-level applications.
However, it also brings new failure modes to the interfaces

between the hypervisor, hardware, and operating system,
e.g., error propagation between guest system and the
hypervisor. Directed effort is required to ensure fault/error
containment and checkpoint consistency if checkpointing is
used to keep the VM snapshot for rapid recovery.

(iii) Data storage driven availability continues to be a
significant challenge. With the wide geographical spread of
the cloud, opportunities for partitioning and inconsistency in
the data are not in-significant. While approximation
methods are used to achieve data consistency and reducing
the performance impact, there is need for sound approaches
to determine the tradeoff between consistency and
availability in real environments.

(iv) Cloud infrastructure and service assessment and
validation methods are greatly lacking. The cloud’s massive
scale demands metrics and sound methods for measurement,
modeling, and analysis to obtain trusted assessment results.

II. CLOUD OUTAGES
We start our discussion by highlighting representative

examples of cloud outages. These outages did not only
affect the cloud availability, they also forced cloud
providers to make important design changes in the cloud
infrastructure. These are the valuable lessons for
constructing the next generation of highly available and
secure clouds.

A. Microsoft Azure
During a routine operating system upgrade on March 13,

2009, the deployment service within Windows Azure began
to slow down due to networking issues. This caused a large
number of servers to time out and fail.

Applications running only as a single instance (i.e.,
without replication) shut down when the corresponding
server went down. Very few applications running multiple
instances failed, although some were degraded due to one
instance being down. In addition, the ability to perform
management tasks from the web portal appeared unavailable
for many applications due to the Fabric Controller being
loaded with work during the serialized recovery process.

To prevent such occurrences in the future, Microsoft has
been fixing the network issues. It is refining and tuning
recovery algorithms to ensure handling malfunctions
quickly and gracefully. For continued availability during
upgrades, application owners are encouraged to deploy their
application with multiple instances. The second instance of
an application is not counted against quota limits to allow
customers to run two instances of each application.

978-1-4673-2266-9/12/$31.00 ©2012 IEEE

B. Amazon S3
The 8-hour outage of Amazon services on July 20, 2008,

was caused by a single bit error in messages communicated
(using a gossip protocol) between the servers. In their
postmortem analysis, system engineers at Amazon
determined that “there were a handful of messages ... that
had a single bit corrupted such that the message was still
intelligible, but the system state information was incorrect.
We use MD5 checksums throughout the system, for example,
to prevent, detect, and recover from corruption that can
occur during receipt, storage, and retrieval of customers'
objects. However, we didn’t have the same protection in
place to detect whether this particular internal state
information had been corrupted. As a result, when the
corruption occurred, we didn’t detect it and it spread
throughout the system....” [1].

Amazon decided to add one more layer of checksum to
protect the stored internal state information.

C. BitBucket
On October 3, 2009, BitBucket (https://bitbucket.org/)

experienced 16+ hours of downtime due to two consecutive
DDoS attacks targeted at the network interfaces on Amazon
EBS (Elastic Block Store) service for storage used with EC2
instances. Such a problem could have been quickly resolved
if the incidents were promptly diagnosed given sufficient
visibility to the network traffic. The real issue is the
multilevel administration of cloud services.

For BitBucket system administrators, the network traffic
on the physical servers is a black box. Consequently, the
administrators cannot do anything at the layers they cannot
reach. The only solution is to rely on Amazon’s support.
However, after 6 hours, even with urgent request tickets and
phone calls, Amazon’s best advice was that EBS is a
“shared network resource” and therefore performance would
vary. Only afterward did Amazon acknowledge the
problems with the service and work with BitBucket to
resolve the problem.

It was determined that BitBucket was under a massive-
scale DDoS attack using UDP packets. Amazon simply
blocked the UDP traffic to resolve the problem. On the next
day, another DDoS using TCP packets targeted BitBucket.
But this time it took only two hours for Amazon and
BitBucket to resolve the problem.

D. How can research help?
Failure patterns similar to the S3 failure were observed

in an error-‐injection based experimental analysis [2] of the
Ensemble Group Communication System (GCS), a robust
communication layer for distributed dependable
applications. The study shows that about 5–6% of
application failures are due to an error escaping the GCS
error-‐containment mechanism and manifesting as silence
data corruption. It is important to note that although the
percentage of the observed silence data corruption is
relatively small, such errors do constitute an impediment to
achieving high dependability because recovery from these
failures can involve significant system downtime.

Validation of such large-scale cloud computing
deployments is always challenging, yet it is an interesting
opportunity for the research community. An example of
work in this direction is CloudVal [3], a fault injection
framework designed to validate the dependability of cloud
virtualization infrastructure. The paper presents a case study
using a set of representative fault models, such as transient
faults (system sensitivity to soft errors), guest misbehavior
faults (possibility of error propagation from guest system to
hypervisor), performance faults (potential of race
conditions), and maintenance faults (turning on/off selected
hardware resources, such as the CPU). The study uncovers
several defects in the implementation of KVM and XEN
hypervisors.

In the following sections, along with discussing the
underlying cloud technologies, we examine some of the
limitations of current technologies and the root causes of
dependability problems. TABLE 1 summarizes our discussion.

III. DEPENDABILITY OF MULTICSORE PROCESSORS
Recent advancements in manufacturing technology have

led to development of multi-core processors and CPU
performance enhancement techniques. The reduction in the
size of individual gates allows putting more transistors into
a single integrated circuit die. Partitioning the available
transistors into multiple cores limits the power consumption
and reduces heat dissipation only to those cores that are
currently active. These architectures demand new reliability
techniques to ensure correct operations.

TABLE 1: SUMMARY OF TECHNIQUES AND CHALLENGES THAT AFFECT CLOUD DEPENDABILITY
Cloud	 layer	 Dependability	 Techniques	 Comments	

Multicore	
Processor

Permanent failure tolerance
• Core disabling
• Core salvaging: at ISA,

microarchitecture, or
software layer

Transient error tolerance:
DMR or TMR using
• Static core binding
• Dynamic core binding

• Need techniques to cope with both hard and transient errors
• Introduces complexity in the architecture
• Limited use in cloud (using commodity hardware)
• High error rate due to high CPU utilization

Virtual	
Machine

• Monitoring at hypervisor layer
• VM Checkpoint and Rollback
• VM Migration

• New failure modes at hypervisor
• Failure propagation: guest to host; host to management system
• Minimize checkpoint corruption and overhead
• Semantic gap between hypervisor and guest system

Storage	
System

• Amazon Dynamo
• Google Datastore (uses Paxos to support replication)

• Trade-offs between consistency and availability
• Testing/benchmarking challenges

A. Permanent failure tolerance in multicore processors
Permanent (hardware) failures in processors have

become more prevalent due to increases in core area and in
the number of cores. Several high-level techniques have
been proposed for tolerating such errors in multicore
architectures. Besides the option to disable the faulty core,
other advanced techniques, such as core salvaging, core
virtualization, and core cannibalization, attempt to use
working sections of a faulty core to improve overall chip
performance. TABLE 2 summarizes and critiques the key
concepts behind this work.

B. Transient error tolerance in multicore processors
Smaller device sizes do reduce the probability of a strike

from cosmic radiation on an individual device, they also
reduce the charge required for a charged particle to flip the
state and cause a single event upset. In addition, the
increasing clock frequency of the processor increases the
possibility of an upset in the combinational logic to be
latched by a flip-flop. These trends in multicore necessitate
transient error tolerance in these processors.

On the positive side, multicore architectures bring the
possibility of supporting hardware redundancy in both a
static and dynamic manner. TABLE 3 summarizes two
common core-binding techniques for transient error
tolerance in multicore architectures.

As an example of redundancy at the core level, IBM
provided multiple levels of error detection and recovery for
the G5 and G6 processors, starting from protecting the
memory arrays on the chip and going to chip-level
techniques in a multichip module (MCM). Multiple
processor cores are interconnected to form an MCM. A
special processor on the MCM is designated as the system
processor. In case of a failure of one of the processors, its
state is migrated to another idle processor in the MCM; this

is called Transparent Processor Sparing. This approach
requires an efficient mechanism to determine the state to be
checkpointed and to capture that state periodically. Using
multicore processors in the context of an application such as
cloud computing would present the challenge of developing
more sophisticated models for core-level checkpointing.

C. Challenges of using multicores in the cloud
Multicore processors are the power behind cloud

computing. Challenges in exploiting the potential
redundancies offered by multi-core technologies include:
• Increasing levels of integration at the node level to

produce large computing clusters prohibits (or makes it
expensive) the straightforward application of replication
techniques at the system level.

• Increasing CPU usage leads to higher error rates in
memory [13]. More rigorous study is needed to evaluate
how this issue affects the aging of cloud hardware.

• Most reliability techniques at the processor architecture
level need specialized hardware, but cloud computing
uses commodity multicore processors. Furthermore,
many of these techniques are in early stages of
descriptions and may have yet-to-be identified issues in
implementation and, in assessing the real improvement
in availability they bring for the added complexity.

• There is a need for a framework to effectively combine
the tolerance techniques for hard and transient errors.

IV. DEPENDABILITY OF VIRTUAL MACHINES
The use of virtual machine (VM) based systems

introduces the hypervisor between the operating system and
the hardware. The relationship between the hypervisor, also
called the virtual machine monitor (VMM), and the guest
operating system is analogous to the traditional relationship
between the operating system and the application processes
running on it.

TABLE 2: A TAXONOMY OF MULTICORE TECHNIQUES TO TOLERATE PERMANENT FAILURES
Technique Brief Description Comments

Core Disabling Core must be disabled due to permanent failure. Cannot utilize the functional part of the core
Architectural Core
Salvaging (e.g., [5])

Every core is utilized as a fault-free core to execute the part of
the ISA that it can execute without any fault. On an error, state
is transferred to a core that has been predetermined to be able
to execute the faulty instruction.

Utilizes partially damaged cores; introduces
hardware complexity to salvage cores; state
transferring is expensive

Microarchitectural
Core Salvaging (e.g.,
Core Cannibalization
[7])

Cores are viewed at the granularity of pipeline stages in
lending resources to other cores in the event of a failure in any
stage of a core. This improves lifetime chip performance by
enabling more cores to be functional.

More hardware complexity due to micro-
architectural connections and redundancy;
cannot cover all the instructions (according to
analysis of nonreplicated instructions in [5])

Software-based Core
Salvaging (e.g., Core
Virtualization [6])	

System-level software virtualizes a set of partially faulty cores
to provide logically correct virtual cores for application
execution.

High performance overhead due to instruction
emulation in software

TABLE 3: A TAXONOMY OF MULTICORE TECHNIQUES TO TOLERATE TRANSIENT ERRORS
Technique Brief Description Comments

Static	 Core	
Binding

Cores are assigned as spares statically, and an
entire core is disabled upon fault in the core

� Any permanent failure makes a pair of cores unavailable
� Two cores in the pair have to run at the speed of the slower
core (difference in the core speeds could be due to process
variation)

Dynamic	 Core	
Binding	 [4]

Spare cores are allocated dynamically based on the
allowable network configuration, and an entire
core is disabled upon a fault in the core

� Complexity on the core interconnected network
� Requires more sophisticated models for core-level
checkpointing

A. Virtual machine based dependability techniques
1) Fault and failure detection
VMs provide a software layer between OS and hardware

and enables monitoring of the behavior of the guest system.
Vigilant [14] is an initial effort that applies machine
learning to detect VM failures based on the correlation of
events generated by monitors at the hypervisor layer.
Intrusion detection systems (IDS) are moving toward out-
of-host implementations, in which the hypervisor layer
becomes an attractive option [15].

Monitoring at the hypervisor layer enables failure/attack
isolation and hence, independent reporting of the observed
incidents from the outside, without the possibility of being
corrupted/manipulated by the failing guest system.

2) Recovery
Virtualization encapsulates each complete guest system

into a virtual machine and provides a convenient way to
capture snapshots of the system state. Therefore, checkpoint
and rollback are the primary recovery mechanisms in
virtualization environment. TABLE 4 lists the existing
mechanisms of VM checkpointing.

In the first category of VM checkpoint, the VM is
stopped completely to save its state in persistent storage,
and then the VM resumes. This approach incurs a large
system downtime during the checkpoint.

In the second category (e.g., CEVM [8] and VNsnap
[9]), VM live migration and copy-on-write are employed to
create replica images of VMs with low overhead. Then the
image is written to disk in the background or by the separate
physical node. This disk-based VM checkpointing is not
scalable, as it stresses the storage system when many VM
checkpoints need to be written at the same time. In addition,
the checkpoint is susceptible to corruption due the low-
frequency updating.

The last two categories are the high-frequency VM
checkpointing based on live migration (e.g., Remus [10])
and incremental checkpoint in main memory (e.g., VM-
µCheckpoint [11]). These checkpoint schemes cannot
tolerate latent errors, since the checkpoint might contain
dormant faults. A hierarchical architecture combining high-
frequency, incremental checkpointing and low-frequency,

disk-based checkpointing is proposed in [11]. This approach
reduces checkpointing corruption and performance
overhead, but it still achieves latent error tolerance.

B. Challenges of using virtualization in the cloud
Although there has been substantial progress in

improving VM checkpointing, it is still challenging to
minimize checkpoint performance overhead, checkpoint
corruption, and checkpoint inconsistency in a seamless way
in the cloud infrastructure.

The non-uniform, dynamic geographic distribution of the
nodes in the current cloud-computing environment violates
the assumptions of traditional distributed systems regarding
communication overhead. Legacy techniques such as
synchronous and asynchronous checkpointing already incur
significant overhead and cannot be applied naïvely in the
new scenario without investigation. Added to that are the
high and nondeterministic costs that result from the dynamic
nature of the distributed system.

Recent studies [3] have shown that VMs introduce new
failure modes at the interface between the hypervisor, the
hardware, and the operating system. The study [3] of
hypervisor resiliency to errors revealed defects in the
implementations of both KVM and XEN hypervisors. These
defects can significantly affect the availability and
maintainability of the cloud. For example, turning on
CPUs/cores may cause hypervisor failure (e.g., crash of the
KVM-hypervisor when turning on a CPU core), or memory
corruptions in a single VM can cause the cloud management
system to hang.

The major technical challenge in implementing
monitoring and recovery mechanisms at the hypervisor level
is the semantic gap between the guest system and the low-
level hypervisor. The semantic gap prevents the hypervisor
from interpreting the behavior of the guest system from the
set of observable events and states at the hypervisor’s point
of view. To address this problem, virtual machine
introspection techniques [12] have been introduced. The
current techniques use the knowledge of the internal
structure of the guest system to extract its behavior. For
example, Linux kernels manage processes by maintaining a
list of task_struct data structure, which can be used to obtain
the list of the running processes in the guest system.

TABLE 4: CATEGORIES OF EXISTING MECHANISMS FOR VM CHECKPOINTING
Mechanism Brief Description	 Comments	

Stop-and-Save Stops a VM completely, and saves its
state to persistent storage

• Large system downtime
• Provided by all major VMM systems

Low-Freq (interval >1h)
based on live migration
(e.g., CEVM, VNsnap)

Creates a VM replica on a remote node
via live migration, then the remote node
writes the replica to disk

• Significant recomputation during recovery, as checkpoint
frequency is low
• Large overhead (maintain full replicas for a protected VM)

High-Freq (interval
10~1000 ms) based on
live migration (e.g.,
Remus)

Maintains a VM replica on a separate
physical node via live migration, and
fails-over upon a failure

• Large overhead while migrating latest updates to the remote
node continuously (~50% overhead for 50ms checkpoint
interval)
• Fail-stop assumption

High-Freq (interval
10~1000 ms) based on
incremental checkpointing
(e.g., VM-µCheckpoint)

Maintains high frequency (intervals <1s)
incremental checkpoint of dirty pages in
main-memory; recovers from the stored
checkpoint in the same process context

• Small overhead (6.3% for SPEC06, 17.5% for Apache)
• Reduced likelihood of checkpoint corruption
• High recovery overhead when suffering latent faults (must
recover from the disk-based checkpoint)

The fundamental limitation of this approach is its
dependence on the invariants of the guest system, mostly of
the guest operating system. Therefore, the implementation
of this approach must be adjusted whenever the used
invariants change. For example, the location and structure of
the task_struct vary in different versions of the Linux
kernel, so the introspection tools have to be customized
accordingly to operate correctly. In addition, significant
effort is often required to obtain the meaningful OS
invariants. The developers and maintainers of these tools
need to have a deep understanding of the internal
implementation of the interested systems. Unfortunately,
this is almost impossible in case of a closed-sourced OS like
any version of Windows OS.

V. DEPENDABILITY OF THE STORAGE SYSTEM
The storage system is an important component in cloud

system stacks. Enterprise organizations expect high
availability to be ensured by the storage system, particularly
with respect to production data. To meet these requirements,
storage systems become more complex, leading to potential
reliability problems. In this section, we briefly present
examples (summarized in TABLE 5) of how storage systems
in the commercial cloud overcome these challenges.

A. Amazon Dynamo
Dynamo is a highly available key-value storage system

for the Amazon online store. Dynamo employs the principle
of eventual consistency (weak consistency) to achieve better
availability. This section discusses the trade-off decision
and techniques to achieve high availability.
• Data partitioning using consistent hashing. To distribute

the workload and ensure consistency, Dynamo stores
data in a logical hash-ring. A hash-ring consists of
nodes, in which each node is responsible for storing a
range of keys. When read or write requests arrive, a hash
(key) is calculated to identify the appropriate node for
accessing the associated value.

• Achieving eventual consistency using replication and
resolving data conflicts using a vector clock. Each
key/value pair is replicated on the replica nodes. Since
the rings are logically formed, different nodes in
different datacenters can be placed on one logical ring.
Even when one datacenter is destroyed, Dynamo is still
able to recover data from replicas in other datacenters.
Using logical vector timestamping, clients are able to
resolve potential conflicts in the replicas at read time.

• Failure detection and membership management using
Gossip messages. To detect failure promptly, Dynamo
uses a distributed message exchange protocol called

Gossip. Each node maintains a view containing the
health status of its neighbor nodes. When a failure
occurs, the node directly connected to failed node knows
first; it then gossips a failure event to other nodes in its
view. Next, these nodes continue to propagate the failure
event to other nodes in their views.

B. Google Datastore for App Engine
Using master/slave replication, Google chose to

prioritize performance and read consistency over
availability by asynchronously replicating data from the
master datacenter to the slave. However, this architecture
performs poorly in some situations, such as:
• Unstable clusters might cause the master and its slave to

be out of sync. In this case, the system must switch to
read-only periods to synchronize the master and the
slave. This consequently results in write-unavailability
periods for the users.

• In the unplanned downtime, it is possible for the user to
lose write operations that occur near this period.
These issues become more severe as the service grows.

After two years from initial deployment, Google App
Engine had experienced serious performance degradation
and several long service outages.

To solve this problem, Google had implemented High
Redundancy Datastore (HRD) service. The HRD is able to
tolerate planned maintenance and is highly resilient to
unplanned infrastructure issues. However, both Google and
their customers have to pay for this level of availability.
Similarly to Amazon’s Dynamo, HRD sacrifices
performance and consistency to achieve higher availability,
as its write latency increases and read consistency decreases.

One of the key technologies in HRD is the Paxos
consensus algorithm [17], which enables HRD to
synchronize data across datacenters in real time. The Paxos
algorithm is used to reach the agreement on a single value in
the presence of failures.

C. Challenges of Storage Systems in the Cloud
Data storage systems must effectively manage increasing

volumes of data, while striving to maintain the availability
and consistency of the stored data. The challenges include:

Achieving scalability. Given rapidly growing volumes of
data, storage systems must be able to scale to customer
demand. While traditional relational database management
systems (RDBMS) provide rich functionalities and maintain
ACID (atomicity, consistency, isolation, durability)
properties, it takes a lot of effort to scale these systems to
the cloud environment. Recent systems, such as Amazon
Dynamo and Google Datastore, trade the functionalities of
traditional RDBMS for scalability and availability.

TABLE 5: EXAMPLES OF CLOUD STORAGE SYSTEMS
System Brief Description Comments

Amazon
Dynamo

A highly available key-value storage system that
powers Amazon store. Dynamo’s design concepts
have influenced dozens of new database systems.

• Membership management is at scales of thousands of machines
(recall the Amazon outage because of gossip messages).
• Resolving data inconsistency is the developers’ responsibility.

Google
Datastore

A schema-less object datastore with a query engine
and atomic transactions.

• Legacy applications with complex requirements have to readjust
their data representation to fit with Datastore’s model.

Improving performance. Recently, some storage systems
have elected to use solid state drives or RAM memory to
enhance performance [16]. To further improve
performance, both the storage layer and the processing layer
require more advanced optimization techniques.

Developing and deploying failure detection on a large
scale. At many current clouds’ scales, failure is the norm
rather than the exception. Failure may happen at any layer,
from physical storage devices, to file system drivers, to the
network layer. As the Amazon S3 incident (in section II)
exemplifies, it is challenging to effectively coordinate
failure detectors to ensure coverage and timely detection.
Furthermore, automating a part of the recovery process is
required to reduce operational costs and system downtime.

VI. CLOUD INFRASTRUCTURE AND SERVICE ASSESSMENT
Evaluation of cloud services is difficult from the

customer’s standpoint. Real-world behavior of cloud
services may differ from the service level agreement. This
section discusses metrics for benchmarking cloud services,
highlighting key challenges of evaluating these metrics.

Performance. Performance metrics are usually stated in
the service level agreement. Common performance metrics
are response time, throughput, and others. One may measure
these metrics by running a test using representative data.
However, to simulate peak requests on a large scale, such as
requests coming in from all over the world, is a big
challenge to performance evaluation.

Consistency. In cloud, it is common practice to trade off
consistency for availability. Due to the distributed nature of
cloud computing, data are often replicated to data centers at
different geographic locations. A proper consistency
evaluation should initiate tests from different locations.

Availability. Availability is frequently defined in the
service level agreement. Current cloud services provide a
health dashboard to present status of services to customers.
However, these dashboards’ update intervals may not meet
customers’ needs in monitoring cloud services. Further,
unavailable cloud services are rare, and significant time is
required to quantify cloud availability.

Fault Tolerance. Since cloud systems are often built on
top of commodity hardware, failure is a norm. A challenge
is - how to evaluate the fault tolerance of the cloud in
operational setting. It is difficult to accurately emulate
physical hardware failures in cloud computing facilities or
to simulate a large-scale disaster, such as a tornado or flood.

Cost. Choosing the right cloud provider and the right
type of service to maximize return on investment is difficult.
One may estimate the cost-effectiveness of different cloud
services by projecting their application requirements when
signing a service level agreement.

VII. CONCLUSION
This paper attempted to critique succinctly the key

techniques and techniques challenges building high

availability into a cloud infrastructure, with focus on three
enabling technologies: multi-core architecture, virtual
machine, and the storage system.

ACKNOWLEDGMENT
This work was supported in part by NSF grant CNS 10-

18503 CISE, the Department of Energy under Award
Number DE-OE0000097, the Air Force Office of Scientific
Research, under agreement number FA8750-11-2-0084, the
Defense Threat Reduction Agency under award no.
HDTRA1-11-1-0008, Boeing Corporation, and Infosys Ltd.
The authors also thank Fran Baker for her careful reading of
the draft of this paper.

REFERENCES
[1] “Amazon S3 Availability Event: July 20, 2008,”

http://status.aws.amazon.com/s3-20080720.html
[2] Basile, C. et al., "Group communication protocols under errors," In

Proc. of the 22nd Int’l Symposium on Reliable Distributed Systems
[3] Pham, C. et al., "CloudVal: A framework for validation of

virtualization environment in cloud infrastructure," 41st Annual Int’l
Conf. on Dependable Systems Networks (DSN ‘11)

[4] LaFrieda, C. et al., “Utilizing Dynamically Coupled Cores to Form a
Resilient Chip Multiprocessor,” In Proc. of the 37th Annual Int’l
Conf. on Dependable Systems and Networks (DSN '07)

[5] Powell, M. et al., “Architectural core salvaging in a multi-core
processor for hard-error tolerance,” In Proc. of the 36th Annual Int’l
Symposium on Computer Architecture (ISCA '09)

[6] Joseph, R. “Exploring salvage techniques for multi-core
architectures,” In Workshop on High Performance Computing
Reliability Issues (HPCRI) 2005

[7] Romanescu, B. and Sorin, D., “Core cannibalization architecture:
improving lifetime chip performance for multicore processors in the
presence of hard faults,” In Proc. of the 17th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT '08)

[8] Chanchio, K. et al., “An efficient virtual machine checkpointing
mechanism for hypervisor-based HPC systems,” in Proc. of High
Availability and Performance Computing Workshop, 2008

[9] Kangarlou, A. et al., “VNsnap: taking snapshots of virtual networked
environments with minimal downtime,” in Proc. of the 39th Annual
Int’l Conf. on Dependable Systems and Networks (DSN '09)

[10] Cully, B. et al., “Remus: high availability via asynchronous virtual
machine replication,” in Proc. of USENIX Symposium on Networked
Systems Design and Implementation, 2008

[11] Wang, L. et al., "Checkpointing virtual machines against transient
errors," 16th Int’l On-Line Testing Symposium (IOLTS), 2010

[12] Payne, B.D. et al., "Secure and Flexible Monitoring of Virtual
Machines," 23rd Annual Computer Security Applications Conf., 2007

[13] Schroeder, B. et al., “DRAM errors in the wild: a large-scale field
study,” In Proc. of the 11th ACM Int’l joint Conf. on Measurement
and Modeling of Computer Systems (SIGMETRICS '09)

[14] Pelleg, D. et al., “Vigilant: out-of-band detection of failures in virtual
machines,” SIGOPS Oper. Syst. Rev. 42, 1 (January 2008)

[15] Garfinkel, T. and Rosenblum, M., “A virtual machine introspection
based architecture for intrusion detection,” In Proc. Net. and
Distributed Sys. Sec. Symp., February 2003

[16] Ousterhout, J. et al., "The Case for RAMCloud," Communications of
the ACM, Vol. 54, No. 7, July 2011

[17] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
16(2):133-169, 1998

