
A Framework for Generation, Replay, and Analysis of
Real-World Attack Variants

Phuong Cao, Eric C. Badger, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

 1308 W Main St, Urbana, IL 61801
{pcao3,badger1,kalbarcz,iyer}@illinois.edu

ABSTRACT
This paper presents a framework for (1) generating variants of known
attacks, (2) replaying attack variants in an isolated environment and,
(3) validating detection capabilities of attack detection techniques
against the variants. Our framework facilitates reproducible security
experiments. We generated 648 variants of three real-world attacks
(observed at the National Center for Supercomputing Applications at
the University of Illinois). Our experiment showed the value of
generating attack variants by quantifying the detection capabilities of
three detection methods: a signature-based detection technique, an
anomaly-based detection technique, and a probabilistic graphical
model-based technique.

I. INTRODUCTION
In this paper, we address attacks that attempt to gain continuous
control over enterprise and government networks, with a focus on
reconnaissance and extraction of secret data [5]. These attacks
broadly fall in the category of Advanced Persistent Threats (APT)
[2]. Such persistent attacks can result in a system being compromised
for a long time (e.g., 205 days, as reported in [16]) before the intruder
is discovered. According to the FireEye Advanced Threat Report,
4,192 of such attacks targeted a variety of sectors such as
government, financial services, energy services, and technologies in
2013 [16].

In the first stage, attackers gain initial access to machines in the
target network, e.g., using stolen credentials or zero-day exploits
[12]. Once a machine has been compromised, in the next stage,
attackers may install remote administration toolkits (RAT) and
establish covert communication channels. That facilitates persistent
access to the compromised machines. During the intermediate stage,
the attacker may gain different degrees of footholds in the system. In
the final stage, attackers can continuously extract sensitive data,
inject malicious commands, or disrupt critical production services.

To have clear visibility of an ongoing attack, host and network
security monitors must be deployed at various levels of the system
and network infrastructure, e.g., system logs daemon or the Bro

network intrusion detection system (IDS) [1]. These monitors emit
security event that indicate important activities in a target system. For
example, a RAT installation by an attacker is often preceded by the
transfer of a malicious file, e.g., a download of a file with a sensitive
extension (.exe, .c, .sh) from a remote server using the HTTP
protocol. The malicious file could be source code of a privilege-
escalation exploit. An IDS such as Bro can generate an alert for the
malicious file based on a subscription to a malware hash registry.

Detection of such persistent, multi-stage attacks is challenging. First,
advanced attackers can create an attack variant that achieves the
same objective of a known attack while bypassing the existing
detection approaches, e.g., the attack variant can use a covert channel
(e.g., Internet Relay Chat (IRC) or the Domain Name System (DNS)
exfiltration technique [4]), rather than HTTP, to download code
necessary for RAT installation. In that scenario, the detection
mechanism based on the attack signature, which assumes the use of
HTTP, would fail to detect the attack variant. Second, monitoring
policies must be updated regularly, for example, to incorporate the
signature of an obfuscated RAT binary file [11]. Even when the
malicious file is detected, an attacker may already have misused the
compromised system. Thus, one needs to investigate preceding
events leading to the transfer of the malicious file.

This paper presents a framework for: (1) generating variants of
known attacks, (2) replaying attack variants, and (3) validating
detection capabilities of attack detection techniques against the
generated variants. The contributions of this work are as follows:

• We develop a procedure for generating attack variants that aims
to achieve the same objectives as the original attacks. An attack
variant is represented by an event sequence (corresponding to
attacker actions), in which some events in the event sequence of
the original attack are substituted by equivalent events. A
database of interchangeable events was manually constructed
based on domain knowledge of the events present on a target
system. Given a sequence of events in an attack, events in this
sequence are repeatedly replaced with interchangeable events to
generate new sequences, which represent attack variants.

• We develop a prototype of an attack replay framework to
facilitate replay of attacks and their variants in a controlled
environment, i.e., a testbed. Each attack is packaged into an
attack container, which contains preinstalled vulnerable
software, and host and network security monitors. An attack is
replayed by executing a sequence of programs, such as exploit
code or vulnerable software, in the attack containers, which
results in security events or alerts being generated by network
and host security monitors. When an event is observed by a
security monitor, the event is routed to an attack-detection
backend, where different attack detection techniques can be
evaluated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
HotSoS '16, April 19-21, 2016, Pittsburgh, PA, USA
© 2016 ACM. ISBN 978-1-4503-4277-3/16/04…$15.00
DOI: http://dx.doi.org/10.1145/2898375.2898392

28

• We evaluate the framework on three real-world attacks for
which we generated a total of 648 unique attack variants (either
corresponding to other known attacks, or new (unknown)
possible attacks that might happen in the future). We evaluated
the detection efficiency of the following techniques (in order of
increasing sophistication): (1) signature-based detection, using a
file hash of known malicious files [1]; (2) anomaly-based
detection, using high-frequency events observed in past attacks
as an indicator of future attacks; and (3) detection based on
probabilistic graphical models (e.g., factor graphs) that capture
relationships between multiple events generated by security-
monitoring tools to enhance detection efficiency [12]. The
results show that factor graph analysis (using the AttackTagger
[12]) could detect more than half of the attack variants (up to
75%), whereas the signature-based approach detected 25%, and
the frequency-based approach detected up to 33%. That
indicates that simple techniques such as signature-based
techniques cannot detect the majority of the variants, whereas
more sophisticated techniques, such as factor graph analysis, are
less sensitive to attack variants. The proposed framework is
being experimented at the National Center for Supercomputing
Applications. The generated variants provide an additional
dimension for assessing the efficacy of various detection
techniques.

II. BACKGROUND
This section describes key concepts used in this paper.

An attack is a process of violating confidentiality, integrity, or
availability of a targeted computer and network system. Attacks are
classified into two types: transient and persistent attacks.

A transient attack is a brief attack that occurs at irregular and
unpredictable times. The attack is executed by one or a series of
network requests or shell commands that happen in a short period of
time. For example, SQL injection attacks use a specially crafted SQL
command to attach malicious SQL queries into a legitimate SQL
command. Transient attacks are often carried out by script kiddies
using off-the-shelf exploitation kits (e.g., Metasploit). They often
cause immediate damage to a target system. More importantly, these
attacks often come without any prior symptoms that indicate an
incoming attack.

A persistent multi-stage attack is an attack that spans a relatively
long period of time, on the order of days, weeks, or months. The
main goal of attackers is to gain persistent access to the compromised

system to continuously gather intelligence and/or exploit the system
infrastructure, for example, to build a botnet. Because we mainly
focused on persistent attacks, in this paper, an attack simply refers to
a persistent multi-stage attack.

Such an attack may consist of multiple stages, including initial
compromise, internal reconnaissance, escalation of privileges,
establishing of a foothold, lateral movement, command and control,
delivery of payload, and clearing of traces (Figure 1). From the
defender’s perspective, the attack is represented by a sequence of
events. An event indicates an important activity in a target system,
which is observed by security monitors.

A variant of a persistent or a multi-stage attack aims to achieve
the same objective as the original attack. An attack variant is
represented by an event sequence (corresponding to the attacker
actions), in which equivalent events have been substituted for some
events in the event sequence of the original attack. The attack variant
can be a known or an unknown (but plausible) attack. In addition,
some unimportant (for achieving the attack objectives) events (e.g.,
downloading of a document file) can be present in the variant to
create noise that may confuse security-detection mechanisms.

Monitors are tools that collect operational data on a computer system
or a network. A security monitor analyzes the collected data and
produces events, which are abstractions of an important activities in
the system being monitored (e.g., security alerts). Signatures of
known attacks are often used for the detection of transient attacks.
For example, the Bro IDS [1] looks for a malformed heartbeat
request in a Secure Sockets Layer/Transport Layer Security
(SSL/TLS) session to identify the Heartbleed attack. We distinguish
two types of security monitors: host monitors and network monitors.
Host monitors extract information from the activities observed on a
given system (e.g., a workstation). For instance, the host monitors
could look at what commands the user is executing, what ports are
open, or what files have changed. Network monitors extract
information that is being sent between two endpoints, such as the
workstation and a Web server. The network traffic is analyzed, and
important information is extracted to generate an alert to indicate the
presence of suspicious content or network activity patterns. Examples
of alerts are malformed packets, matching payloads for malware
signatures, or anomalous hosts.

Figure 1. Timeline of a persistent attack. Major stages of the attack are: initial compromise, internal reconnaissance, escalation of
privileges, establishing of a foothold, lateral movement, command and control, delivery of payload, and clearing of traces. At each

stage, we list example alerts generated by the security monitoring system at NCSA during real attacks.

29

III. THREAT MODEL AND A MOTIVATING
EXAMPLE

Threat Model. We assume that attackers use valid credentials to
gain initial access to a target system. That assumption is reasonable,
given that a relatively high number of leaked credentials (on the
order of hundreds of millions) have recently been sold in
underground markets [17]. Further, we assume that host and network
security monitors in the target system are set up properly to monitor
attackers’ activities and generate raw logs, including system logs,
network flows, and IDS alerts. That assumption is reasonable
because: (1) host monitors run with highest privileges (e.g., in kernel
mode), and thus can observe initial stages of an attack; and (2)
network monitors are often distributed and not present on the
compromised machine. Thus, it requires much effort from the
attackers to tamper with the monitors. The challenge is to extract
events from such heterogeneous logs and detect an ongoing attack in
order to enable detection before the system is compromised. Under
the threat model we are examining, we next describe an example of a
real-world multi-stage attack.
A Motivating Example. In multiple security incidents reported at
NCSA, attackers infiltrated a target system using stolen credentials,
e.g., a private Secure Shell (SSH) key or a username-password pair;
we categorized those incidents as credential-stealing attacks [14]. The
target system allows multiple users to interact with the system using
remote terminals via the SSH protocol. Persistent access to the target
system was achieved by installing a backdoor.

In a variant of such an attack, attackers can achieve the same goal
(i.e., gaining persistent access) by employing minor modifications of
the attack payload. Table 1 shows events observed during a persistent
attack (the second column) and events collected during a variant of
this attack (the third column). Attackers can evade signature-based
intrusion-detection systems, particularly, if the signature has been
constructed based on the events reported by the security-monitoring
system.

In our example (Table 1), the attacker logged into the system from a
remote computer using the stolen credentials of a legitimate user. At
the same time, the legitimate user was also accessing the system

using his or her terminal, causing the “log in from multiple IP
addresses” alert. The cause of the stolen credentials was revealed to
be the use of a weak, guessable password by (“log in using weak
password” alert). Immediately after logging in, the attacker cleared
their traces by disabling the logging facility of the Bash shell. The
corresponding command was “unset HISTFILE,” which caused the
alert “disable Bash command history logging.” The attacker then
attempted to install a privilege escalation exploit, obtained from an
external HTTP server to get root permissions. To make the system
access permanent, the attacker injected a malicious backdoor code
into the SSH authentication daemon. That technique did not create
any new processes in the target system, making detection and
forensic analysis difficult. Furthermore, the technique ensured that
the backdoor code always ran as a system daemon. In the
authentication daemon, the backdoor code established a connection
to an external IRC server, which served as a proxy receiving
commands from the attacker, giving the attacker permanent access to
the system.

In a variant of this attack, attackers can achieve the same attack goal
(i.e., gaining persistent access) by employing minor modification of
the attack payload to evade detection. Specifically, the attacker can
substitute an equivalent action for an existing action, or execute
dummy actions to introduce noise. In our example (Table 1),
attackers can create an attack variant as follows. Instead of obtaining
the exploit file from an HTTP server, the attacker can download the
exploit file using the File Transfer Protocol (FTP), or a secret DNS
tunnel [4]. From a monitoring point of view, actions generate
different events. If an IDS rule is configured to detect an attack based
on the event ALERT SENTITIVE HTTP URI, the rule does not work
when the attacker uses the attack variant. To introduce noise, the
attacker can execute legitimate operations during an attack session,
such as download a document file or edit the Bash init file (indicated
as Noise in the right column in Table 1).
It is challenging for a traditional IDSes to detect such persistent
attacks. Since IDSes only look for indicators of compromise in
specific events, they fail to take into account contextual information
about other events. Sophisticated attackers can obfuscate observed
events by using different techniques at each stage of the attack,
making IDSes less effective.

Observation
number

Alert sequence Variant of the alert sequence

1 * N/A Brute-force guess SSH password

2 Log in from multiple IP addresses Log in from an anomalous host (e.g., a remote host)

3 Log in using weak password * Noise

4 * N/A Log in using an inactive account

5 Disable Bash command history logging Set number of commands recorded by Bash history to 0

6 Download a sensitive file using HTTP Download a sensitive file using telnet/scp/DNS

7 * N/A * Noise

8 Compile and run the source exploit file Compile and run the source exploit file

9 Inject backdoor to the SSH authentication service Install backdoor as a system service

10 Establish connection with C&C server using IRC Establish connection with C&C server using DNS

Table 1. A real-world persistent attack using stolen credentials and one of the attack variant.

30

IV. GENERATING ATTACK VARIANTS
This section describes a technique to generate attack variants from a
sequence of events in a known attack. Each attack variant is
checked for validity to ensure that the variant achieves the same
attack objective (e.g., gaining persistent access to a system) as the
original attack.

A. Generating attack variants
Given an attack represented by an event sequence, the goal is to
generate a finite set of attack variants. The main ideas are as
follows. First, use an interchangeable (or equivalent) event to
replace an existing event in the sequence, while still achieving the
same objective. For example, instead of obtaining the exploit file
from an HTTP server, the attacker could download the exploit file
using a secret DNS tunnel [4]. Such a variant make it difficult to
detect the attacks, if the IDS is configured to detect only a specific
event or a specific pattern of events. Furthermore, one could insert
random noise between events (e.g., add events corresponding to
legitimate actions during an attack session, such as downloading of
a document file or editing the Bash init file). Those actions do not
directly contribute to the success of an attack. In this paper, we
consider only interchangeable events, and we do not consider noise
in our algorithm.

In order to ensure that the variant achieves the same attack goal as
the original attack, we maintain a map of interchangeable (or
equivalent) events (recall that each event corresponds to an attacker
action) as an input to our algorithm for generating attack variants.
Each event in the original attack maps into one or more equivalent
events.

The map of interchangeable events was created by analyzing events
observed in past attacks at NCSA. First, each event was
automatically classified into an attack stage by the monitoring tool
that generated the event. Second, events in the same attack stage
were manually grouped into an attack action, using domain
knowledge of security experts. An attack action contains a set of
interchangeable events. For example, an event “download a
sensitive file from an HTTP server” can have several equivalent
events (e.g., download from an IRC server or an FTP server).
Actions corresponding to these events achieve the same objective of
downloading a file with a sensitive extension (e.g., .c, .sh, .exe), but
use different file transfer protocols.

We implemented an iterative algorithm for generating attack
variants (Listing 1). Given an attack, the algorithm computes the
Cartesian product of the sets of substitutable events. The number of
attack variants is in the polynomial order to the length of the
common subsequence. The algorithm works by repeatedly building
more complex attack variants from simpler ones, starting from an
attack variant of a common subsequence of length 1. By doing so,
the algorithm makes sure that all possible variants are generated.

The algorithmic complexity of the attack variant-generation
procedure is O(M^N), where N is the length of the attack and M is
the number of equivalent events. An exponential number of attack
variants can be generated, which is helpful for evaluating different
attack scenarios. The procedure repeats M times for each of the N
events in the attack. In our attacks, the number of equivalent events,
M, is usually from 5 to 10, and the number of events, N, is usually
from 10 to 20. Thus, the computation is fast and can be completed
in less than a second using commodity hardware.

Algorithm: Generate attack variants from a sequence of events.
Input:
An event sequence E, for example, [3,1,5], where each number is an
identifier of an event.
A list L contains the sets of equivalent events; for example,
[
 3: [2,4],
 1: [],
 5: [6],
]
In this list, event 3 is equivalent to events 2 and 4; event 1 does not
have any equivalent event; and event 5 is equivalent to event 6.
Output: Variants of the event sequence E; for example,
[
 [3,1,6]
 [2,1,5]
 [4,1,5]
 [2,1,6]
 [4,1,6]
].

In the above list of variants, one of the variants is [3,1,6], where
event 5 in the event sequence E is replaced by event 6.
Algorithm pseudo-code:
Attack variants are created by printing Cartesian products of the sets
in list L. The procedure works by iterating over indexes of the events
in list L. A pseudo-code of the procedure is shown in Listing 1.

generate_variant(L):
 # an array of [0..0] of size len(L)
 indexes = [0]*len(L)
 while indexes:
 print(indexes)
 indexes = next_indexes(indexes, L)

next_indexes(indexes, L):
 n = length(indexes)
 i = n - 1
 while True:
 indexes[i] = indexes[i] + 1
 if indexes[i] < length(L[i]):

 break
 indexes[i] = 0
 i = i - 1
 if i < 0:

 return None
 return indexes

Listing 1. Algorithm for generating attack variants.

31

B. Validity of an attack variant
An attack variant must be valid (i.e., it must achieve the same
objectives as the original attack). In other words, when an attack is
being launched against a target system, the system state of an attack
variant must be the same as the system state of the original attack,
i.e., the target system is compromised. Since an attack variant is
generated by replacing an event with an interchangeable event, both
events are the result of the same attack action that makes the same
change to the system state.

As an example, consider the following events of an attack. An
attacker logs in from an anomalous host, downloads source code (.c,
.sh) or an executable exploit file (.exe), and then compiles and
executes the downloaded file to gain privileged access to the target
system.
[ALARM_ANOMALOUS_HOST,
ALERT_SENSITIVE_HTTP_URI,
COMPILE,
ALERT_NEW_SYSTEM_SERVICE]
One possible variant of the original attack is:
[ALARM_MULTIPLE_LOGIN,
ALERT_SENSITIVE_FTP_URI,
EDIT SOURCE FILE,
COMPILE,
ALERT_NEW_SHELL_INIT_ENTRY]
In that variant, two alternative techniques are used: (1) to obtain the
source code of the exploit file, and (2) to gain persistent access to the
compromised system. The exploit file is obtained using an FTP
server instead of an HTTP server. The substituted event is
ALERT_SENSITIVE_HTTP_URI (using an HTTP server to
download the exploit file), which has the same effect as the event
ALERT_SENSITIVE_FTP_URI. In the original attack, the attacker
installed a backdoor as a new system service, i.e., a system-wide
daemon in /etc/init.d/. In the attack variant, the attacker installed the
backdoor as a per-user startup script in the bash init file ~/.bashrc.
That attack variant is valid because it achieves the same objectives as
the original attack.

V. AN ATTACK REPLAY FRAMEWORK
This section describes a framework to replay generated attack
variants in a controlled environment (Figure 3). The purposes of the
framework are: (1) to verify the validity of the variants, (2) to collect
attack traces, and (3) to test the detection capability of monitoring
techniques.

Given an attack, the framework generates attack variants and stores
them in an attack repository. Then, an attack container is constructed
for each attack variant to facilitate the attack replay in the attack
replay environment. The attack containers are managed and isolated
by a container engine that makes use of virtualization techniques.
During replay, host and network monitors collect attack traces such
as system logs and network flows. Our framework can be used to
validate the efficiency of security-monitoring tools and detection
mechanisms/algorithms implemented using signature generation and
matching, anomaly-detection algorithms, or probabilistic graphical
models such as Bayesian networks or factor graphs [1][12].
Input. The input to our attack replay framework is an attack
represented as a sequence of events describing the key stages of the
attack. We use a comma-separated values (CSV) file to store the
attack. Each line in the file indicates an event.
Generating attack variants. Using our attack variant-generation
technique (Section IV.A), the framework generates a set of variants
for the original attack and stores the variants in an attack repository.
Currently, our repository includes attack artifacts of representative
attacks from multiple categories, such as buffer overflow, privilege
escalation,1 and denial of service. The attack artifacts include exploit
code, vulnerable software, monitors, and scripts to launch the attacks.
A container of an attack variant is built using the artifacts and
transferred to the attack replay environment for validation and
testing.

Attack replay environment. In the attack replay environment, each
attack variant is executed in a separate attack container that contains
exploit code, vulnerable programs, and monitors. An attack container
is a virtualized environment for running an isolated system.
Virtualization is a suitable technique to quarantine execution of an
exploitation code or vulnerable programs to avoid impacting a
production environment.

Our attack container engine uses both Linux Containers (LXC) and
virtual machines (VM); each targets a different type of attack. LXCs
create an isolated system using a process model on a shared kernel.
VMs create an isolated system by spawning a full-featured virtual
machine. Compared to VMs, LXCs are lightweight and can only be
used to run application-level attacks (e.g., a SQL injection attack in a
Web application). On the other hand, VMs can run kernel-level
attacks (e.g., an integer overflow in a device driver).
LXC is an operating-system-level virtualization environment that
enables running of multiple isolated Linux systems [19]. Attack

1 In this paper, we focus on privilege escalation attacks, because they

are good examples of persistent attacks and multiple examples are
present in our dataset obtained from NCSA.

Figure 2. An architecture of the attack replay framework

32

containers are run on a host system, and isolation between the host
and the containers is guaranteed by Linux cgroup. LXC runs major
Linux distributions such as Debian and Red Hat, thus allowing us to
reproduce a wide spectrum of vulnerabilities, such as local privilege
escalation or remote exploitation.

Kernel-based Virtual Machine (KVM) is a hardware-assisted
virtualization (HAV) technology. Both CPU vendors (e.g., VT-x
from Intel or SVM from AMD) and the Linux kernel support KVM
by adding extensions to the instruction set [20], which allow a
simpler and potentially more secure hypervisor.

We are using Linux to host the container engine because the Linux
kernel supports LXC and KVM natively. A host Linux can be run
locally on a user’s laptop and contained in a VM or run remotely on a
public cloud computing infrastructure (e.g., Amazon Web Services or
Microsoft Azure). That provides a layer of separation between the
attack container and the user’s environment.

Replaying an attack. An attack is represented as a time-ordered
sequence of events corresponding to attack steps (i.e., actions
performed by the attacker). When an attack is being executed, each
event is mapped into an execution through launching of an
executable program or a script. The mapping is based on a dictionary
that was created manually based on our knowledge of the system and
discussion with the NCSA security team.
For example, (see Table 3) the event ALERT SENSITIVE HTTP
URI, which represents a download of a sensitive file from an HTTP
server, is executed by wget, a file-retrieving program, using the
HTTP protocol, with additional parameters specifying a Uniform
Resource Identifier (URI) to an exploit file.

Collecting logs. During the execution, traces of the attacks are
collected by both host and network monitors for further analysis. A
host monitor targets security and performance-sensitive activities on
a single computer (e.g., what commands a user is executing, what
ports are open, or what files have been changed). A network monitor
targets network packets that are being exchanged among network
endpoints (e.g., network traffic between a workstation and a Web
server). Network packet analysis is performed to alert on
performance and security-sensitive activities (e.g., alerts on
malformed packets, matching of a signature for malicious binaries, or
communication with anomalous hosts).

Our implementation uses open-source monitors and Linux built-in
logging mechanisms such as OSSEC (file integrity monitoring, log
monitoring, root check, and process monitoring), Snoopy (system
call logging), and Bro IDS (network security monitor). For host
monitors, we implemented dozens of custom rules to capture a wide
range of sensitive activities on a host computer. For network
monitors, we use scripts provided with the default installation of Bro,
which captures the majority of sensitive network activities, such as a
download of files with sensitive extensions or a connection to
anomalous hosts.

Our framework supports pluggable monitors. By default, we use
OSSEC for the host monitor and Bro IDS for the network monitor. A
user can change the network monitor (e.g., using the Snort IDS
instead of the Bro IDS) by specifying a monitoring template when
initiating an attack container. A template specifies monitoring
packages and configurations to be initiated. Our template uses
Dockerfile, a text document that contains commands to assemble a
container image [18]. Thus, advanced users can modify Dockerfile to
specify their own monitoring systems.

Host and network monitors output raw logs such as system logs,
OSSEC event logs, and network flows. The collected logs are
transformed into a sequence of events for further analysis. A log entry
of an event consists of following the main components: a timestamp,
an accountable entity, an event, and additional metadata. An example
log entry is shown below.

1453418734, ALERT SENSITIVE HTTP URI,
130.126.xxx.yyy, {rule_id=23}

In the above log entry, an epoch timestamp (e.g., 1453418734) is
used to correlate events (ALERT SENSITIVE HTTP URI), and
happen in different parts of the system and network infrastructure.
An accountable entity specifies a user, a process, or a machine. A
machine can be represented by a machine name or an IP address
(130.126.xxx.yyy) that is responsible for the event. Finally, the
metadata (e.g., information that the event has been triggered by a rule
with rule_id 23) provide contextual information on the recorded
event, such as the rule that triggered the event.

Validation of attack analysis and detection techniques. At the
back end of the framework, various attack analysis, and detection
techniques can be validated in terms of their ability to detect the
presence of an attack replayed in our framework. Usually, a single

Event Action/Command Description

EVENT READ HOST
CONFIGURATION

uname –rvim; cat /proc/cpuinfo Command uname reads the Linux kernel
version of the operating system. Command
cat reads CPU information of the target
machine.

ALERT ROOT LOGIN

ssh root@target-machine.local Command ssh connects as a root user to the
target machine using the SSH protocol.

ALERT SENSITIVE HTTP URI wget http://attacker-
server.local/exploit.py

Command wget downloads a Python exploit
script from an HTTP server to the target
machine.

ALERT SENSITIVE FTP URI ftp –u ftp://anonymous@attacker-
server.local/exploit.py

Command ftp downloads a Python exploit
script from an FTP server to the target
machine.

ALERT CLEAR BASH
HISTORY

rm $HOME/.bash_history Command rm deletes the Bash history file,
which logs commands typed in a Bash
session.

Table 2. An example list of mappings from events to actions/commands; execution of the actions (second column) would cause
generation (by the security-monitoring system) of the stated events (first column).

33

alert is not sufficient to declare the presence of an attack (or conclude
that a system is compromised), particularly when the attack consists
of multiple stages. In our framework, attack-analysis
techniques/detection techniques correlate events recorded by the host
and network monitors to determine the presence of an attacker.

Currently, we have implemented the following attack analysis
techniques. Signature matching looks for a specific signature in terms
of a file hash or a network packet checksum to identify an attack [1].
Anomaly-detection techniques look for high-frequency events
observed in past attacks as an indicator of future attacks. Factor graph
analysis makes decisions using contextual information about an
event, in relation to events observed in the past [12].

VI. EVALUATION
This section presents case studies of attack variants generated from
three real-world attacks. We illustrate the generation of attack
variants and analyze the efficiency of several detection techniques
against the variants.

A. Experimental setup
Our experiments were set up using two servers that were run on-site
at NCSA. Server 1 contained a 24-core Intel Xeon X5650 processor
running at 2.67 GHz and 32 GB of RAM running at 1,333 MHz.
Server 2 contained a 12-core Intel Xeon X5650 processor running at
2.67 GHz and 24 GB of RAM running at 1,333 MHz. Both servers
run the Ubuntu 14.04 LTS operating system.

B. Dataset
We used data on 116 real-world security incidents observed at NCSA
during a six-year period (2008–2013) as the basis for generating
attack variants. Most incidents considered in our dataset are related to
multi-staged attacks, in which an attack spanned a duration of 24 to
72 hours. Incident data include written incident reports and raw logs.

For each incident in our dataset, we obtained the incident report
manually created by NCSA security analysts in free-format text.
Each incident report contains a detailed postmortem analysis of the
incident, including alerts generated by NCSA security-monitoring
tools. Incident reports often include snippets of raw logs associated
with malicious activities. They may also contain extra information
about the incident, such as records of emails exchanged among
security analysts during the incident. For a subset of security
incidents, we also gathered raw logs for a period of 24 to 72 hours
before and after the NCSA security team detected the incident. That
duration of time is sufficiently long to cover most of the traces of
attacks in our dataset. Since the data-retention policy changed during
the time when incident data were being collected, the raw logs were
available only for 23 of 116 incidents. We constructed event
sequences for all 116 incidents using both raw logs and incident
reports. Information on each attack is stored in a CSV file. Each row
in the file specifies the observed time of the event, the event
identifier, and the identifier for the user who was accountable for the
event. We used events observed in past incidents at NCSA to provide
a basis for identifying the mapping of interchangeable events.

C. Case studies: attack variants analysis
To analyze the detection efficiency of different techniques, we
generated and tested attack variants based on the 116 real-world
attacks reported at NCSA. We selected a relatively sophisticated
persistent attack to demonstrate our attack-generation technique.

To provide input for the attack variant generation, we collaborated
with the NCSA security team to build a map of interchangeable
events. Table 4 shows the interchangeable events for the attacks in
our case studies. For example, in the escalate privileges stage, the
objective of the attacker is to place an exploit file in the target
system. That objective can be achieved by downloading the file from
an HTTP server or an FTP server, or using a more covert channel
such as IRC, or directly copying the file using a secure copy program
(scp). We manually constructed the map based on domain knowledge

Attack stage Description Event (real NCSA alerts) Interchangeable events

Initial compromise An abnormal login activity ALERT ANOMALOUS HOST ALERT WEAK PASSWORD LOGIN

ALERT ROOT LOGIN

ALERT WATCHED COUNTRY LOGIN

ALERT COMPROMISED PROFILE LOGIN

ALERT SENSITIVE CREDENTIAL LOGIN

Escalate privilege A download of a source code
file

ALERT SENSITIVE HTTP
URI

ALERT SENSITIVE FTP URI

ALERT SENSITIVE SCP FILE

ALERT NEW IRC DOWNLOAD

Establish foothold An attempt to gain persistent
access

ALERT NEW SYSTEM
SERVICE

ALERT NEW SHELL INIT ENTRY

Establish foothold An attempt to gain persistent
access

ALERT CHANGE
CREDENTIAL

ALERT NEW USER

ALERT NEW SSH AUTHORIZED KEY

Internal reconnaissance An attempt to connect to
command and control server

ALERT COLLECT SYSTEM
INFO

ALERT COLLECT SHELL HISTORY

ALERT READ USER LIST

Deliver payload Extraction of secret data ALERT VIEW PASWORDS
FILE

ALERT VIEW PRIVATE SSH KEY

Deliver payload Misuse of the target system ALERT HIGH NETWORK
FLOW

ALERT HOSTING HIDDEN SPAM

Table 3. A mapping of interchangeable events (real alerts) for the attacks used in the case studies.

34

of the NCSA system and the network infrastructure. Except for some
NCSA-specific events, most of the events are common to other
enterprise systems. Thus, the map can be generalized for other
systems with slight modifications.

Using the attack variant-generation procedure (Section IV), we
generated and validated attack variants for three attacks. Each variant
generated an event sequence with the same length as the original
attack. The difference between an event sequence corresponding to
an attack variant and the one corresponding to the original attack can
be one or multiple events, which were selected from the map of
interchangeable events. Note that, if an event in an attack is not listed
in Table 4 , the event is not interchangeable.
Case study 1. Credential-stealing attack
The objective of this attack was to gain persistent access to a shared
supercomputing system, where multiple users interact with the
system using remote terminals via the SSH protocol.
The observed event sequence in the attack is as follows.
[LOGIN,
ALERT_ANOMALOUS_HOST,
ALERT_FAILED_PASSWORD,
ALERT_CLEAR_HISTORY,
ALERT_COLLECT_SYSTEM_INFO,
ALERT_SUDO_BRUTEFORCE,
ALERT_SENSITIVE_HTTP_URI,
ALERT_NEW_SYSTEM_SERVICE,
ALERT_RESTART_SYSTEM_SERVICE]
In this attack, the attacker obtained credentials to the target system
(by brute-force guessing of a password or by phishing for the
password of a legitimate user). Instead of logging in from a
recognized computer (e.g., the legitimate user workstation), the
attacker logged in from an anomalous host (ALERT ANOMALOUS
HOST), which is a computer that has never been used to log into the
system before. The attacker tried to get root privilege without success
(ALERT SUDO BRUTEFORCE, ALERT FAILED PASSWORD),
and then the attacker collected system information such as the kernel
version, in order to find a suitable exploit. The attacker then
downloaded an exploit file with sensitive extensions via an HTTP
GET request (ALERT SENSITIVE HTTP URI) to obtain root
permissions. After compromising the machine, the attacker installed
a compromised version of the SSH service to the /usr/sbin directory.
This service aimed to collect credentials of future user logins and to
provide the attacker with persistent access to the compromised
system for further misuse.

When a legitimate user interacts with the target system, an individual
event in the analyzed event sequence may occasionally be observed.
Observation of an individual alert is not a sufficient basis for
declaring the presence of an attack. For example, ALERT
SENSITIVE HTTP URI may raise a lot of false positives, e.g., when
a user downloads a legitimate executable file from the Internet.
However, observation of the entire event sequence of this incident
suggests an ongoing attack with the objective of gaining persistent
access to the target system.

An example variant of that attack is shown below (the
interchangeable events are in bold).
[LOGIN,
ALERT_MULTIPLE_LOGIN,
ALERT_FAILED_PASSWORD,

ALERT_CLEAR_HISTORY,
ALERT_COLLECT_SYSTEM_INFO,
ALERT_SUDO_BRUTEFORCE,
ALERT_SENSITIVE_FTP_URI,
ALERT_NEW_SHELL_INIT_ENTRY,
ALERT_RESTART_SYSTEM_SERVICE]

 By definition of the interchangeable events, each variant is a valid
attack, because the attacker action corresponding to an
interchangeable event achieves the same objective as the action
corresponding to the event in the original attack. In this variant, the
attacker logs in at the same time as a legitimate user. Since the
legitimate user is a frequent user of the target system, an SSH
authentication monitor raised an alert on the concurrent uses of the
user account (ALERT MULTIPLE LOGIN). From a monitor point of
view, the event ALERT ANOMALOUS HOST is interchangeable
with the event ALERT MULTIPLE LOGIN because the monitor
views the two events an abnormal login activities. Similarly, to
achieve the goal of delivering a privilege exploit file to the target
system, this attack variant obtains the file from an FTP server
(ALERT SENSITIVE FTP URI) rather than from an HTTP server
(ALERT SENSITIVE HTTP URI). In this variant, the attacker
installed a backdoor as a startup entry in the Bash init file
(.bash_profile) for persistent access (ALERT NEW SHELL INIT
ENTRY).
Case study 2. Outbound brute-force SSH attack
The objective of this attack was to misuse NCSA infrastructure to run
brute-force SSH attacks against an external target system. By using
this technique, the attacker can hide his or her true identity.
The observed event sequence in the attack is as follows.
[LOGIN
ALERT_FAILED_PASSWORD
ALERT_COLLECT_SYSTEM_INFO
ALERT_COLLECT_SHELL_HISTORY
ALERT_CHANGE_CREDENTIAL
ALERT_VIEW_PASSWORD_FILE
ALERT_SENSITIVE_HTTP_URI]

In this attack, the attacker obtained credentials to the target system by
brute-force guessing of the password (ALERT FAILED
PASSWORD), and then the attacker collected command history of
the system and system information, such as kernel version, in order
to find a suitable exploit (ALERT_COLLECT_SYSTEM_INFO and
ALERT_COLLECT_SHELL_HISTORY). In addition, the attacker
immediately changed the user’s password (using the passwd
command) to block access by the legitimate user. The attacker then
attempted to view the password file at /etc/passwd
(ALERT_VIEW_PASSWORD_FILE) and downloaded a potential
exploit file with sensitive extensions via an HTTP GET request
(ALERT SENSITIVE HTTP URI) to obtain root permissions. In this
incident, the details of outbound SSH attacks were discovered by the
the NCSA security team and were not captured by the monitoring
system. Thus, we did not have events for the misuse stage of this
attack. Regardless, we include this attack in order to demonstrate
different variants in the initial stage of the attack.
An example variant of this attack is shown below (the
interchangeable events are in bold).
[LOGIN

35

ALERT_FAILED_PASSWORD
ALERT_READ_USER_LIST
ALERT_COLLECT_SHELL_HISTORY
ALERT_NEW_USER
ALERT_VIEW_PRIVATE_SSH_KEY
ALERT_SENSITIVE_HTTP_URI]

In this variant, the attacker obtained a list of active users in the
system (using command w to identify logged in users and their
current activities); if no administrator was active, the attacker
proceeded with the attack (ALERT_READ_USER_LIST). Instead of
changing the password of the compromised user account, the attacker
can create a new user to gain persistent access
(ALERT_NEW_USER); in future attempts, the attacker can log in
using the new user account. Similarly, to achieve the goal of
extracting credentials from the compromised system, the attacker can
read a private SSH key, e.g., the private RSA key stored in
$HOME/.ssh/id_rsa (ALERT VIEW PRIVATE SSH KEY).
Case study 3. Misuse the system for Denial of Service attack
The objective of this attack was to misuse NCSA infrastructure to
build a botnet and to run Denial of Service attacks against an external
server.
The observed event sequence in the attack is as follows.
[LOGIN,
ALERT_SENSITIVE_CREDENTIAL_LOGIN,
ALERT_ANOMALOUS_HOST,
ALERT_SENSITIVE_HTTP_URI,
ALERT_INVALID_MIME_EXT,
COMPILE,
ALERT_HIGH_NETWORKFLOWS]

In this attack, the attacker obtained credentials for the target system
by brute-force guessing the password of a system account named
mailman, which is used to manage emails. This account had a weak
password that consisted of seven lowercase characters, allowing the
attacker to gain access in just a few guesses
('ALERT_SENSITIVE_CREDENTIAL_LOGIN'). Similar to
previous attacks, this login also results in the anomalous host alert.
The attacker then downloaded a file with sensitive extensions via an
HTTP GET request (ALERT SENSITIVE HTTP URI). In this
incident, the attacker disguised the file (.c) as an image file (.jpg)
which resulted in an alert ('ALERT_INVALID_MIME_EXT'). The
file was compiled and used to run a botnet. The botnet sent a large
number of UDP packets to launch Denial of Service attacks against
an external server, which resulted in the alert
'ALERT_HIGH_NETWORKFLOWS'. An example variant of this
attack is shown below (the interchangeable events are in bold).
[LOGIN,
ALERT_WEAK_PASSWORD_LOGIN,
ALERT_WATCHED_COUNTRY_LOGIN,
ALERT_SENSITIVE_HTTP_URI,
ALERT_INVALID_MIME_EXT,
COMPILE,
ALERT_HOSTING_HIDDEN_SPAM]

In this variant, the attacker logged in from a foreign country that has
a high level of attack activities ('ALERT WATCHED COUNTRY

LOGIN’). The attacker used a weak password, that can be found in
common password dictionaries
'ALERT_WEAK_PASSWORD_LOGIN’. In the misuse phase, the
attacker used NCSA infrastructure to send spam emails instead of
DoS attacks.

D. Results
We generated 144, 216, and 288 attack variants for attacks in case
studies 1, 2, and 3, respectively. Each variant was replayed and used
to validate the following detection techniques. Although some of the
techniques are simple, the purpose of our experiment was to
demonstrate the ability of our framework to assess the efficacy of
different techniques.

Signature-based detection techniques only look for a specific
signature in terms of a file hash or a network packet checksum in
order to identify a malicious user. In our implementation, the
signature approach employs a database of file hashes, which can be
provided by an open-source antivirus program, such as ClamAV. We
assume a signature-based IDS that only inspects downloads that use
HTTP protocol. When an attacker downloads a file with a sensitive
extension using the HTTP protocol (ALERT SENSITIVE HTTP
URI), the file is checked for its signature. The attacker can evade that
detector by using other protocols, such as SCP, FTP, or IRC.
Frequency-based detection techniques look for the most frequent
event observed in the past attacks as an indicator of future attacks. In
our NCSA dataset, one of the most frequent events was ALERT
ANOMALOUS HOST. In the initial compromise stage of the
observed attacks, attackers often logged in from a remote location or
used a device different from that of the legitimate user. That action
resulted in the event ALERT ANOMALOUS HOST. When such an
event is found in a variant, the frequency-based technique detects an
attack.

Factor graph analysis is a sophisticated technique. It not only looks
for an individual event, but also analyzes the entire event sequence
collectively. A factor graph-based detection tool, such as
AttackTagger [12], constructs graph events linked by factor
functions; each function identifies a signal of how the events relate to
the suspiciousness of the user, e.g., the user account has been
compromised in the past. An entire sequence of hidden-user states is
inferred, based on observed user behaviors (represented as an event
sequence generated by the monitoring system) and defined factor
functions. This technique works with multistage attacks because it
considers contextual information about an event in relation to events
observed in the past.
Results (Table 5) show that factor graph analysis can detect more
than half of the attack variants, whereas both the signature-based
approach and frequency-based approach detect a smaller number of
attack variants. We discuss the attack detection rate of the evaluated

 Attack 1 Attack 2 Attack 3

Signature-based 36/144
(25%)

54/216
(25%)

72/288
(25%)

Frequency-based 24/144
(16.7%)

0/216
(0%)

96/288
(33.3%)

Factor-graph-
based

108/144
(75%)

108/216
(50%)

186/288
(64.6%)

Total number of
variants

144 216 288

Table 4. Attack variant detection results. There is no technique

that can detect all the variants.

36

techniques in the following paragraphs.

Because the signature-based technique relies on a specific signature
(i.e., the event ALERT SENSITIVE HTTP URI), it does not work
when an attacker delivers an exploit using a different protocol, e.g.,
using SCP to evade deep packet analysis of file content. The attacker
can obfuscate file content to evade signature analysis. Obfuscation
services, e.g., ExeCrypt, can obfuscate an executable file and test to
confirm that the obfuscated file is not detected by multiple antivirus
engines [22]. The signature-based technique achieved only a 25%
detection rate.

The frequency-based technique achieved a low detection rate (up to
33.3%) because it relies on only a single event, ALERT
ANOMALOUS HOST, for detection. In case study 2, the attacker
did not raise any anomalous host alert, possibly because the attacker
resided in the same network as the legitimate user. Advanced
attackers can hijack an existing SSH session of a legitimate user, thus
avoiding alerts on abnormal logins [21].

The factor graph analysis obtained a higher detection rate (up to
75%) compared with the signature-based and frequency-based
techniques, because the factor functions were designed to be
insensitive to variants. For example, a factor function treats two
slightly different events (e.g., ALERT SENSITIVE FTP URI and
ALERT SENSITIVE HTTP URI) in the same way.

VII. RELATED WORK
Initial work on intrusion detection focused on building monitoring
infrastructure for computer and network systems [23]. At the host
level, syslog (Linux) and Security Log (Windows) are used to record
activities of applications and system services. For example, Snoopy
is a library that logs all executed commands and arguments on a host
system to syslog for auditing purposes [24]. Since more machines are
being provisioned in the cloud computing environment, recent work
has focused on VM monitoring (e.g., for rootkit detection, using
introspection techniques [25]). Our approach complements those
studies by using alerts generated by such techniques to generate
attack variants and applying them to test the efficiency of monitoring
and detection techniques.
As attacks have become more sophisticated, much work has been
dedicated to the forensic analysis of attacks, which is valuable for
understanding attack development. With the rise of advanced
persistent threat (APT) attacks, top security companies regularly
release reports on high-profile attacks (e.g., Stuxnet [26]). In the first
stage, such attacks often make use of stolen credentials to gain initial
access to a target system. Detailed analysis of this stage has been
done by Sharma in [14], where such attacks are categorized as
credential-stealing attacks. In addition, recent work has focused on
preempting such attacks in the initial stages and analyzing obfuscated
network attack vectors [12][27].
Recent research has contributed to reproducible attacks. Exploit
codes of known attacks have been organized by the Metasploit
project and open-source communities on GitHub [28]. At NCSA, the
OpenNSM project [29] is creating Linux container images of
different monitoring software. These studies, however, do not
produce a unified end-to-end platform.

VIII. CONCLUSION
In this paper, we presented a framework for generating attack
variants from known attacks, replaying of such attacks in a controlled
testbed environment, and the validation of example detection
techniques against 648 generated attack variants. Our attack replay
framework is an important step toward providing a platform for

attack replay in a controlled environment to facilitate validation of
monitoring tools, security policies, and detection techniques in an
open environment and in the presence of realistic attack scenarios.
The generated variants provide an additional dimension for assessing
the efficacy of various detection techniques.
ACKNOWLEDGMENTS
We acknowledge the NCSA security team for providing incident data and
ground truth; undergraduate researchers Surya Bakshi and Simon Kim for
contributing to the attack repository of the testbed. This work was supported
by the National Security Agency under Award No. H98230-14-C-0141, in
part by the National Science Foundation under Grant No. CNS 10-185303
CISE, and in part by the Air Force Research Laboratory and the Air Force
Office of Scientific Research under agreement No. FA8750-11-20084. The
opinions, findings, and conclusions stated herein are those of the authors and
do not necessarily reflect those of the sponsors.
REFERENCES
[1] Bro IDS, https://www.bro.org/, 2016
[2] Sood AK, Enbody RJ. “Targeted cyberattacks: A superset of advanced persistent

threats.” IEEE Security & Privacy 2013 Jan; 1(1):54–61.
[3] Black PE. “Ratcliff/Obershelp pattern recognition.” In Dictionary of Algorithms

and Data Structures [online], Vreda Pieterse and Paul E. Black, eds. 2004.
[4] Hunt JW, Szymanski TG. “A fast algorithm for computing longest common

subsequences.” Commun. ACM 1977 May; 20(5), 350–353.
[5] Langner R. “Stuxnet: Dissecting a cyberwarfare weapon.” IEEE Security &

Privacy 2011 May; 9(3):49–51.
[6] Wu Z, Xu Z, Wang H. “Whispers in the hyper-space: High-speed covert channel

attacks in the cloud.” In USENIX Security Symposium 2012 Aug 8 (pp. 159–173).
[7] Owens Jr JP. A study of passwords and methods used in brute-force SSH

attacks (Doctoral dissertation, Clarkson University), 2008.
[8] Javed M, Paxson V. “Detecting stealthy, distributed SSH brute-forcing.” In

Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security 2013 Nov 4 (pp. 85–96).

[9] Merkel D. “Docker: lightweight Linux containers for consistent development and
deployment.” Linux Journal 2014 Mar 1; 2014(239):2.

[10] Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I,
Warfield A. “Xen and the art of virtualization.” ACM SIGOPS Operating Systems
Review 2003 Dec 1; 37(5):164–177.

[11] Lee B, Kim Y, Kim J. “binOb+: A framework for potent and stealthy binary
obfuscation.” In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security. ACM, 2010.

[12] Cao P, Badger E, Kalbarczyk Z, Iyer R, Slagell A. “Preemptive intrusion
detection: Theoretical framework and real-world measurements.” In Proceedings of
the 2015 Symposium and Bootcamp on the Science of Security 2015 Apr 21 (p. 5).

[13] Dittrich D, Dietrich S. “Discovery techniques for P2P botnets.” Stevens Institute of
Technology CS Technical Report 2008 4 (2008): 1–14.

[14] Sharma A, Kalbarczyk Z, Barlow J, Iyer R. “Analysis of security data from a large
computing organization.” In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP
41st International Conference on, pp. 506–517, 2011.

[15] Hirschberg DS. “Algorithms for the longest common subsequence
problem.” Journal of the ACM (JACM) 24, no. 4 (1977): 664–675.

[16] FireEye report, http://www2.fireeye.com/rs/fireye/images/fireeye-advanced-threat-
report-2013.pdf.

[17] Thomas K, McCoy D, Grier C, Kolcz A, Paxson V. “Trafficking fraudulent
accounts: The role of the underground market in Twitter spam and abuse.” In USENIX
Security, pp. 195–210. 2013.

[18] Dockerfile reference, https://docs.docker.com/engine/reference/builder/
[19] LXC - Linux Containers. linuxcontainers.org, 2016.
[20] Kivity A, Kamay Y, Laor D, Lublin U, Liguori A. “kvm: the Linux Virtual

Machine Monitor.” In Linux Symposium, pp. 225–230, 2007.
[21] PuttyHijack, https://www.insomniasec.com.
[22] ExeCrypt obfuscation service, http://execrypt.com/en/.
[23] Anderson JP. Computer security threat monitoring and surveillance (TR), 1980.
[24] Snoopy logging library, https://github.com/a2o/snoopy.
[25] Pham C, Estrada ZJ, Cao P, Kalbarczyk Z, Iyer RK. “Building reliable and secure

virtual machines using architectural invariants.” IEEE S&P 2014; 12(5):82–85.
[26] Langner R. “Stuxnet: Dissecting a cyberwarfare weapon.” IEEE Security &

Privacy 2011; 9(3):49–51.
[27] Du H, Yang SJ. “Probabilistic inference for obfuscated network attack

sequences.” 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 57–67, 2014.

[28] Maynor, David. Metasploit Toolkit for Penetration Testing, Exploit Development,
and Vulnerability Research. El, Syngress Publishing Inc., 2007.

[29] OpenNSM project, www.open-nsm.net

37

