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ABSTRACT 
This paper presents a framework for (1) generating variants of known 
attacks, (2) replaying attack variants in an isolated environment and, 
(3) validating detection capabilities of attack detection techniques 
against the variants. Our framework facilitates reproducible security 
experiments. We generated 648 variants of three real-world attacks 
(observed at the National Center for Supercomputing Applications at 
the University of Illinois). Our experiment showed the value of 
generating attack variants by quantifying the detection capabilities of 
three detection methods: a signature-based detection technique, an 
anomaly-based detection technique, and a probabilistic graphical 
model-based technique. 

I. INTRODUCTION 
In this paper, we address attacks that attempt to gain continuous 
control over enterprise and government networks, with a focus on 
reconnaissance and extraction of secret data [5]. These attacks 
broadly fall in the category of Advanced Persistent Threats (APT) 
[2]. Such persistent attacks can result in a system being compromised 
for a long time (e.g., 205 days, as reported in [16]) before the intruder 
is discovered. According to the FireEye Advanced Threat Report, 
4,192 of such attacks targeted a variety of sectors such as 
government, financial services, energy services, and technologies in 
2013 [16]. 

In the first stage, attackers gain initial access to machines in the 
target network, e.g., using stolen credentials or zero-day exploits 
[12]. Once a machine has been compromised, in the next stage, 
attackers may install remote administration toolkits (RAT) and 
establish covert communication channels. That facilitates persistent 
access to the compromised machines. During the intermediate stage, 
the attacker may gain different degrees of footholds in the system. In 
the final stage, attackers can continuously extract sensitive data, 
inject malicious commands, or disrupt critical production services. 

To have clear visibility of an ongoing attack, host and network 
security monitors must be deployed at various levels of the system 
and network infrastructure, e.g., system logs daemon or the Bro 

network intrusion detection system (IDS) [1]. These monitors emit 
security event that indicate important activities in a target system. For 
example, a RAT installation by an attacker is often preceded by the 
transfer of a malicious file, e.g., a download of a file with a sensitive 
extension (.exe, .c, .sh) from a remote server using the HTTP 
protocol. The malicious file could be source code of a privilege-
escalation exploit. An IDS such as Bro can generate an alert for the 
malicious file based on a subscription to a malware hash registry.  

Detection of such persistent, multi-stage attacks is challenging. First, 
advanced attackers can create an attack variant that achieves the 
same objective of a known attack while bypassing the existing 
detection approaches, e.g., the attack variant can use a covert channel 
(e.g., Internet Relay Chat (IRC) or the Domain Name System (DNS) 
exfiltration technique [4]), rather than HTTP, to download code 
necessary for RAT installation. In that scenario, the detection 
mechanism based on the attack signature, which assumes the use of 
HTTP, would fail to detect the attack variant. Second, monitoring 
policies must be updated regularly, for example, to incorporate the 
signature of an obfuscated RAT binary file [11]. Even when the 
malicious file is detected, an attacker may already have misused the 
compromised system. Thus, one needs to investigate preceding 
events leading to the transfer of the malicious file. 

This paper presents a framework for: (1) generating variants of 
known attacks, (2) replaying attack variants, and (3) validating 
detection capabilities of attack detection techniques against the 
generated variants. The contributions of this work are as follows: 

• We develop a procedure for generating attack variants that aims 
to achieve the same objectives as the original attacks. An attack 
variant is represented by an event sequence (corresponding to 
attacker actions), in which some events in the event sequence of 
the original attack are substituted by equivalent events. A 
database of interchangeable events was manually constructed 
based on domain knowledge of the events present on a target 
system. Given a sequence of events in an attack, events in this 
sequence are repeatedly replaced with interchangeable events to 
generate new sequences, which represent attack variants.  

• We develop a prototype of an attack replay framework to 
facilitate replay of attacks and their variants in a controlled 
environment, i.e., a testbed. Each attack is packaged into an 
attack container, which contains preinstalled vulnerable 
software, and host and network security monitors. An attack is 
replayed by executing a sequence of programs, such as exploit 
code or vulnerable software, in the attack containers, which 
results in security events or alerts being generated by network 
and host security monitors. When an event is observed by a 
security monitor, the event is routed to an attack-detection 
backend, where different attack detection techniques can be 
evaluated.  
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• We evaluate the framework on three real-world attacks for 
which we generated a total of 648 unique attack variants (either 
corresponding to other known attacks, or new (unknown) 
possible attacks that might happen in the future). We evaluated 
the detection efficiency of the following techniques (in order of 
increasing sophistication): (1) signature-based detection, using a 
file hash of known malicious files [1]; (2) anomaly-based 
detection, using high-frequency events observed in past attacks 
as an indicator of future attacks; and (3) detection based on 
probabilistic graphical models (e.g., factor graphs) that capture 
relationships between multiple events generated by security-
monitoring tools to enhance detection efficiency [12]. The 
results show that factor graph analysis (using the AttackTagger 
[12]) could detect more than half of the attack variants (up to 
75%), whereas the signature-based approach detected 25%, and 
the frequency-based approach detected up to 33%. That 
indicates that simple techniques such as signature-based 
techniques cannot detect the majority of the variants, whereas 
more sophisticated techniques, such as factor graph analysis, are 
less sensitive to attack variants. The proposed framework is 
being experimented at the National Center for Supercomputing 
Applications. The generated variants provide an additional 
dimension for assessing the efficacy of various detection 
techniques. 

II. BACKGROUND 
This section describes key concepts used in this paper. 

An attack is a process of violating confidentiality, integrity, or 
availability of a targeted computer and network system. Attacks are 
classified into two types: transient and persistent attacks. 

A transient attack is a brief attack that occurs at irregular and 
unpredictable times. The attack is executed by one or a series of 
network requests or shell commands that happen in a short period of 
time. For example, SQL injection attacks use a specially crafted SQL 
command to attach malicious SQL queries into a legitimate SQL 
command. Transient attacks are often carried out by script kiddies 
using off-the-shelf exploitation kits (e.g., Metasploit). They often 
cause immediate damage to a target system. More importantly, these 
attacks often come without any prior symptoms that indicate an 
incoming attack. 

A persistent multi-stage attack is an attack that spans a relatively 
long period of time, on the order of days, weeks, or months. The 
main goal of attackers is to gain persistent access to the compromised 

system to continuously gather intelligence and/or exploit the system 
infrastructure, for example, to build a botnet. Because we mainly 
focused on persistent attacks, in this paper, an attack simply refers to 
a persistent multi-stage attack. 

Such an attack may consist of multiple stages, including initial 
compromise, internal reconnaissance, escalation of privileges, 
establishing of a foothold, lateral movement, command and control, 
delivery of payload, and clearing of traces (Figure 1). From the 
defender’s perspective, the attack is represented by a sequence of 
events. An event indicates an important activity in a target system, 
which is observed by security monitors.  

A variant of a persistent or a multi-stage attack aims to achieve 
the same objective as the original attack. An attack variant is 
represented by an event sequence (corresponding to the attacker 
actions), in which equivalent events have been substituted for some 
events in the event sequence of the original attack. The attack variant 
can be a known or an unknown (but plausible) attack. In addition, 
some unimportant (for achieving the attack objectives) events (e.g., 
downloading of a document file) can be present in the variant to 
create noise that may confuse security-detection mechanisms. 

Monitors are tools that collect operational data on a computer system 
or a network. A security monitor analyzes the collected data and 
produces events, which are abstractions of an important activities in 
the system being monitored (e.g., security alerts). Signatures of 
known attacks are often used for the detection of transient attacks. 
For example, the Bro IDS [1] looks for a malformed heartbeat 
request in a Secure Sockets Layer/Transport Layer Security 
(SSL/TLS) session to identify the Heartbleed attack. We distinguish 
two types of security monitors: host monitors and network monitors. 
Host monitors extract information from the activities observed on a 
given system (e.g., a workstation). For instance, the host monitors 
could look at what commands the user is executing, what ports are 
open, or what files have changed. Network monitors extract 
information that is being sent between two endpoints, such as the 
workstation and a Web server. The network traffic is analyzed, and 
important information is extracted to generate an alert to indicate the 
presence of suspicious content or network activity patterns. Examples 
of alerts are malformed packets, matching payloads for malware 
signatures, or anomalous hosts.   

 
Figure 1. Timeline of a persistent attack. Major stages of the attack are: initial compromise, internal reconnaissance, escalation of 
privileges, establishing of a foothold, lateral movement, command and control, delivery of payload, and clearing of traces. At each 

stage, we list example alerts generated by the security monitoring system at NCSA during real attacks. 
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III. THREAT MODEL AND A MOTIVATING 
EXAMPLE 

Threat Model. We assume that attackers use valid credentials to 
gain initial access to a target system. That assumption is reasonable, 
given that a relatively high number of leaked credentials (on the 
order of hundreds of millions) have recently been sold in 
underground markets [17]. Further, we assume that host and network 
security monitors in the target system are set up properly to monitor 
attackers’ activities and generate raw logs, including system logs, 
network flows, and IDS alerts. That assumption is reasonable 
because: (1) host monitors run with highest privileges (e.g., in kernel 
mode), and thus can observe initial stages of an attack; and (2) 
network monitors are often distributed and not present on the 
compromised machine. Thus, it requires much effort from the 
attackers to tamper with the monitors. The challenge is to extract 
events from such heterogeneous logs and detect an ongoing attack in 
order to enable detection before the system is compromised. Under 
the threat model we are examining, we next describe an example of a 
real-world multi-stage attack. 
A Motivating Example. In multiple security incidents reported at 
NCSA, attackers infiltrated a target system using stolen credentials, 
e.g., a private Secure Shell (SSH) key or a username-password pair;  
we categorized those incidents as credential-stealing attacks [14]. The 
target system allows multiple users to interact with the system using 
remote terminals via the SSH protocol. Persistent access to the target 
system was achieved by installing a backdoor.  

In a variant of such an attack, attackers can achieve the same goal 
(i.e., gaining persistent access) by employing minor modifications of 
the attack payload. Table 1 shows events observed during a persistent 
attack (the second column) and events collected during a variant of 
this attack (the third column). Attackers can evade signature-based 
intrusion-detection systems, particularly, if the signature has been 
constructed based on the events reported by the security-monitoring 
system. 

In our example (Table 1), the attacker logged into the system from a 
remote computer using the stolen credentials of a legitimate user. At 
the same time, the legitimate user was also accessing the system 

using his or her terminal, causing the “log in from multiple IP 
addresses” alert. The cause of the stolen credentials was revealed to 
be the use of a weak, guessable password by (“log in using weak 
password” alert). Immediately after logging in, the attacker cleared 
their traces by disabling the logging facility of the Bash shell. The 
corresponding command was “unset HISTFILE,” which caused the 
alert “disable Bash command history logging.” The attacker then 
attempted to install a privilege escalation exploit, obtained from an 
external HTTP server to get root permissions. To make the system 
access permanent, the attacker injected a malicious backdoor code 
into the SSH authentication daemon. That technique did not create 
any new processes in the target system, making detection and 
forensic analysis difficult. Furthermore, the technique ensured that 
the backdoor code always ran as a system daemon. In the 
authentication daemon, the backdoor code established a connection 
to an external IRC server, which served as a proxy receiving 
commands from the attacker, giving the attacker permanent access to 
the system.  

In a variant of this attack, attackers can achieve the same attack goal 
(i.e., gaining persistent access) by employing minor modification of 
the attack payload to evade detection. Specifically, the attacker can 
substitute an equivalent action for an existing action, or execute 
dummy actions to introduce noise. In our example (Table 1), 
attackers can create an attack variant as follows. Instead of obtaining 
the exploit file from an HTTP server, the attacker can download the 
exploit file using the File Transfer Protocol (FTP), or a secret DNS 
tunnel [4]. From a monitoring point of view, actions generate 
different events. If an IDS rule is configured to detect an attack based 
on the event ALERT SENTITIVE HTTP URI, the rule does not work 
when the attacker uses the attack variant. To introduce noise, the 
attacker can execute legitimate operations during an attack session, 
such as download a document file or edit the Bash init file (indicated 
as Noise in the right column in Table 1). 
It is challenging for a traditional IDSes to detect such persistent 
attacks. Since IDSes only look for indicators of compromise in 
specific events, they fail to take into account contextual information 
about other events. Sophisticated attackers can obfuscate observed 
events by using different techniques at each stage of the attack, 
making IDSes less effective.  

Observation 
number 

Alert sequence Variant of the alert sequence 

1 * N/A Brute-force guess SSH password 

2 Log in from multiple IP addresses Log in from an anomalous host (e.g., a remote host) 

3 Log in using weak password * Noise 

4 * N/A Log in using an inactive account 

5 Disable Bash command history logging Set number of commands recorded by Bash history to 0 

6 Download a sensitive file using HTTP  Download a sensitive file using telnet/scp/DNS 

7 * N/A * Noise 

8 Compile and run the source exploit file Compile and run the source exploit file 

9 Inject backdoor to the SSH authentication service Install backdoor as a system service 

10 Establish connection with C&C server using IRC Establish connection with C&C server using DNS 

 
Table 1. A real-world persistent attack using stolen credentials and one of the attack variant. 
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IV. GENERATING ATTACK VARIANTS 
This section describes a technique to generate attack variants from a 
sequence of events in a known attack. Each attack variant is 
checked for validity to ensure that the variant achieves the same 
attack objective (e.g., gaining persistent access to a system) as the 
original attack. 

A. Generating attack variants 
Given an attack represented by an event sequence, the goal is to 
generate a finite set of attack variants. The main ideas are as 
follows. First, use an interchangeable (or equivalent) event to 
replace an existing event in the sequence, while still achieving the 
same objective. For example, instead of obtaining the exploit file 
from an HTTP server, the attacker could download the exploit file 
using a secret DNS tunnel [4]. Such a variant make it difficult to 
detect the attacks, if the IDS is configured to detect only a specific 
event or a specific pattern of events. Furthermore, one could insert 
random noise between events (e.g., add events corresponding to 
legitimate actions during an attack session, such as downloading of 
a document file or editing the Bash init file). Those actions do not 
directly contribute to the success of an attack. In this paper, we 
consider only interchangeable events, and we do not consider noise 
in our algorithm. 

In order to ensure that the variant achieves the same attack goal as 
the original attack, we maintain a map of interchangeable (or 
equivalent) events (recall that each event corresponds to an attacker 
action) as an input to our algorithm for generating attack variants. 
Each event in the original attack maps into one or more equivalent 
events.  

The map of interchangeable events was created by analyzing events 
observed in past attacks at NCSA. First, each event was 
automatically classified into an attack stage by the monitoring tool 
that generated the event. Second, events in the same attack stage 
were manually grouped into an attack action, using domain 
knowledge of security experts. An attack action contains a set of 
interchangeable events. For example, an event “download a 
sensitive file from an HTTP server” can have several equivalent 
events (e.g., download from an IRC server or an FTP server). 
Actions corresponding to these events achieve the same objective of 
downloading a file with a sensitive extension (e.g., .c, .sh, .exe), but 
use different file transfer protocols.  

We implemented an iterative algorithm for generating attack 
variants (Listing 1). Given an attack, the algorithm computes the 
Cartesian product of the sets of substitutable events. The number of 
attack variants is in the polynomial order to the length of the 
common subsequence. The algorithm works by repeatedly building 
more complex attack variants from simpler ones, starting from an 
attack variant of a common subsequence of length 1. By doing so, 
the algorithm makes sure that all possible variants are generated.  

The algorithmic complexity of the attack variant-generation 
procedure is O(M^N), where N is the length of the attack and M is 
the number of equivalent events. An exponential number of attack 
variants can be generated, which is helpful for evaluating different 
attack scenarios. The procedure repeats M times for each of the N 
events in the attack. In our attacks, the number of equivalent events, 
M, is usually from 5 to 10, and the number of events, N, is usually 
from 10 to 20. Thus, the computation is fast and can be completed 
in less than a second using commodity hardware. 

Algorithm: Generate attack variants from a sequence of events. 
Input: 
An event sequence E, for example, [3,1,5], where each number is an 
identifier of an event. 
A list L contains the sets of equivalent events; for example,  
[ 
  3: [2,4], 
  1: [], 
  5: [6], 
] 
In this list, event 3 is equivalent to events 2 and 4;  event 1 does not 
have any equivalent event; and event 5 is equivalent to event 6. 
Output: Variants of the event sequence E; for example, 
[ 
  [3,1,6] 
  [2,1,5] 
  [4,1,5] 
  [2,1,6] 
  [4,1,6] 
]. 

In the above list of variants, one of the variants is [3,1,6], where 
event 5 in the event sequence E is replaced by event 6. 
Algorithm pseudo-code: 
Attack variants are created by printing Cartesian products of the sets 
in list L. The procedure works by iterating over indexes of the events 
in list L. A pseudo-code of the procedure is shown in Listing 1. 
 
generate_variant(L): 
    # an array of [0..0] of size len(L) 
    indexes = [0]*len(L)  
    while indexes: 
        print(indexes) 
        indexes = next_indexes(indexes, L) 
 
next_indexes(indexes, L): 
    n = length(indexes) 
    i = n - 1 
    while True: 
        indexes[i] = indexes[i] + 1 
        if indexes[i] < length(L[i]): 

    break 
        indexes[i] = 0 
        i = i - 1 
        if i < 0: 

    return None 
    return indexes 

Listing 1. Algorithm for generating attack variants. 
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B. Validity of an attack variant 
An attack variant must be valid (i.e., it must achieve the same 
objectives as the original attack). In other words, when an attack is 
being launched against a target system, the system state of an attack 
variant must be the same as the system state of the original attack, 
i.e., the target system is compromised. Since an attack variant is 
generated by replacing an event with an interchangeable event, both 
events are the result of the same attack action that makes the same 
change to the system state. 

As an example, consider the following events of an attack. An 
attacker logs in from an anomalous host, downloads source code (.c, 
.sh) or an executable exploit file (.exe), and then compiles and 
executes the downloaded file to gain privileged access to the target 
system. 
[ALARM_ANOMALOUS_HOST,  
ALERT_SENSITIVE_HTTP_URI, 
COMPILE, 
ALERT_NEW_SYSTEM_SERVICE] 
One possible variant of the original attack is: 
[ALARM_MULTIPLE_LOGIN,  
ALERT_SENSITIVE_FTP_URI, 
EDIT SOURCE FILE, 
COMPILE, 
ALERT_NEW_SHELL_INIT_ENTRY] 
In that variant, two alternative techniques are used: (1) to obtain the 
source code of the exploit file, and (2) to gain persistent access to the 
compromised system. The exploit file is obtained using an FTP 
server instead of an HTTP server. The substituted event is 
ALERT_SENSITIVE_HTTP_URI (using an HTTP server to 
download the exploit file), which has the same effect as the event 
ALERT_SENSITIVE_FTP_URI. In the original attack, the attacker 
installed a backdoor as a new system service, i.e., a system-wide 
daemon in /etc/init.d/. In the attack variant, the attacker installed the 
backdoor as a per-user startup script in the bash init file ~/.bashrc. 
That attack variant is valid because it achieves the same objectives as 
the original attack. 

V. AN ATTACK REPLAY FRAMEWORK  
This section describes a framework to replay generated attack 
variants in a controlled environment (Figure 3). The purposes of the 
framework are: (1) to verify the validity of the variants, (2) to collect 
attack traces, and (3) to test the detection capability of monitoring 
techniques.  

Given an attack, the framework generates attack variants and stores 
them in an attack repository. Then, an attack container is constructed 
for each attack variant to facilitate the attack replay in the attack 
replay environment. The attack containers are managed and isolated 
by a container engine that makes use of virtualization techniques. 
During replay, host and network monitors collect attack traces such 
as system logs and network flows. Our framework can be used to 
validate the efficiency of security-monitoring tools and detection 
mechanisms/algorithms implemented using signature generation and 
matching, anomaly-detection algorithms, or probabilistic graphical 
models such as Bayesian networks or factor graphs [1][12]. 
Input. The input to our attack replay framework is an attack 
represented as a sequence of events describing the key stages of the 
attack. We use a comma-separated values (CSV) file to store the 
attack. Each line in the file indicates an event.   
Generating attack variants. Using our attack variant-generation 
technique (Section IV.A), the framework generates a set of variants 
for the original attack and stores the variants in an attack repository. 
Currently, our repository includes attack artifacts of representative 
attacks from multiple categories, such as buffer overflow, privilege 
escalation,1 and denial of service. The attack artifacts include exploit 
code, vulnerable software, monitors, and scripts to launch the attacks. 
A container of an attack variant is built using the artifacts and 
transferred to the attack replay environment for validation and 
testing. 

Attack replay environment. In the attack replay environment, each 
attack variant is executed in a separate attack container that contains 
exploit code, vulnerable programs, and monitors. An attack container 
is a virtualized environment for running an isolated system. 
Virtualization is a suitable technique to quarantine execution of an 
exploitation code or vulnerable programs to avoid impacting a 
production environment.  

Our attack container engine uses both Linux Containers (LXC) and 
virtual machines (VM); each targets a different type of attack. LXCs 
create an isolated system using a process model on a shared kernel. 
VMs create an isolated system by spawning a full-featured virtual 
machine. Compared to VMs, LXCs are lightweight and can only be 
used to run application-level attacks (e.g., a SQL injection attack in a 
Web application). On the other hand, VMs can run kernel-level 
attacks (e.g., an integer overflow in a device driver). 
LXC is an operating-system-level virtualization environment that 
enables running of multiple isolated Linux systems [19]. Attack 

                                                                    
1 In this paper, we focus on privilege escalation attacks, because they 

are good examples of persistent attacks and multiple examples are 
present in our dataset obtained from NCSA. 

 
Figure 2. An architecture of the attack replay framework 
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containers are run on a host system, and isolation between the host 
and the containers is guaranteed by Linux cgroup. LXC runs major 
Linux distributions such as Debian and Red Hat, thus allowing us to 
reproduce a wide spectrum of vulnerabilities, such as local privilege 
escalation or remote exploitation. 

Kernel-based Virtual Machine (KVM) is a hardware-assisted 
virtualization (HAV) technology. Both CPU vendors (e.g., VT-x 
from Intel or SVM from AMD) and the Linux kernel support KVM 
by  adding extensions to the instruction set [20], which allow a 
simpler and potentially more secure hypervisor.  

We are using Linux to host the container engine because the Linux 
kernel supports LXC and KVM natively. A host Linux can be run 
locally on a user’s laptop and contained in a VM or run remotely on a 
public cloud computing infrastructure (e.g., Amazon Web Services or 
Microsoft Azure). That provides a layer of separation between the 
attack container and the user’s environment.  

Replaying an attack. An attack is represented as a time-ordered 
sequence of events corresponding to attack steps (i.e., actions 
performed by the attacker). When an attack is being executed, each 
event is mapped into an execution through launching of an 
executable program or a script. The mapping is based on a dictionary 
that was created manually based on our knowledge of the system and 
discussion with the NCSA security team.  
For example, (see Table 3) the event ALERT SENSITIVE HTTP 
URI, which represents a download of a sensitive file from an HTTP 
server, is executed by wget, a file-retrieving program, using the 
HTTP protocol, with additional parameters specifying a Uniform 
Resource Identifier (URI) to an exploit file.  

Collecting logs. During the execution, traces of the attacks are 
collected by both host and network monitors for further analysis. A 
host monitor targets security and performance-sensitive activities on 
a single computer (e.g., what commands a user is executing, what 
ports are open, or what files have been changed). A network monitor 
targets network packets that are being exchanged among network 
endpoints (e.g., network traffic between a workstation and a Web 
server). Network packet analysis is performed to alert on 
performance and security-sensitive activities (e.g., alerts on 
malformed packets, matching of a signature for malicious binaries, or 
communication with anomalous hosts). 

Our implementation uses open-source monitors and Linux built-in 
logging mechanisms such as OSSEC (file integrity monitoring, log 
monitoring, root check, and process monitoring), Snoopy (system 
call logging), and Bro IDS (network security monitor). For host 
monitors, we implemented dozens of custom rules to capture a wide 
range of sensitive activities on a host computer. For network 
monitors, we use scripts provided with the default installation of Bro, 
which captures the majority of sensitive network activities, such as a 
download of files with sensitive extensions or a connection to 
anomalous hosts.  

Our framework supports pluggable monitors. By default, we use 
OSSEC for the host monitor and Bro IDS for the network monitor. A 
user can change the network monitor (e.g., using the Snort IDS 
instead of the Bro IDS) by specifying a monitoring template when 
initiating an attack container. A template specifies monitoring 
packages and configurations to be initiated. Our template uses 
Dockerfile, a text document that contains commands to assemble a 
container image [18]. Thus, advanced users can modify Dockerfile to 
specify their own monitoring systems. 

Host and network monitors output raw logs such as system logs, 
OSSEC event logs, and network flows. The collected logs are 
transformed into a sequence of events for further analysis. A log entry 
of an event consists of following the main components: a timestamp, 
an accountable entity, an event, and additional metadata. An example 
log entry is shown below. 

1453418734, ALERT SENSITIVE HTTP URI, 
130.126.xxx.yyy, {rule_id=23} 

In the above log entry, an epoch timestamp (e.g., 1453418734) is 
used to correlate events (ALERT SENSITIVE HTTP URI), and 
happen in different parts of the system and network infrastructure. 
An accountable entity specifies a user, a process, or a machine. A 
machine can be represented by a machine name or an IP address 
(130.126.xxx.yyy) that is responsible for the event. Finally, the 
metadata (e.g., information that the event has been triggered by a rule 
with rule_id 23) provide contextual information on the recorded 
event, such as the rule that triggered the event.  

Validation of attack analysis and detection techniques. At the 
back end of the framework, various attack analysis, and detection 
techniques can be validated in terms of their ability to detect the 
presence of an attack replayed in our framework. Usually, a single 

Event Action/Command Description 

EVENT READ HOST 
CONFIGURATION 

uname –rvim; cat /proc/cpuinfo Command uname reads the Linux kernel 
version of the operating system. Command 
cat reads CPU information of the target 
machine. 

ALERT ROOT LOGIN 
 

ssh root@target-machine.local Command ssh connects as a root user to the 
target machine using the SSH protocol. 

ALERT SENSITIVE HTTP URI wget http://attacker-
server.local/exploit.py 

Command wget downloads a Python exploit 
script from an HTTP server to the target 
machine. 

ALERT SENSITIVE FTP URI ftp –u ftp://anonymous@attacker-
server.local/exploit.py 

Command ftp downloads a Python exploit 
script from an FTP server to the target 
machine. 

ALERT CLEAR BASH 
HISTORY 

rm $HOME/.bash_history Command rm deletes the Bash history file, 
which logs commands typed in a Bash 
session. 

Table 2. An example list of mappings from events to actions/commands; execution of the actions (second column) would cause 
generation (by the security-monitoring system) of the stated events (first column). 
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alert is not sufficient to declare the presence of an attack (or conclude 
that a system is compromised), particularly when the attack consists 
of multiple stages. In our framework, attack-analysis 
techniques/detection techniques correlate events recorded by the host 
and network monitors to determine the presence of an attacker.  

Currently, we have implemented the following attack analysis 
techniques. Signature matching looks for a specific signature in terms 
of a file hash or a network packet checksum to identify an attack [1]. 
Anomaly-detection techniques look for high-frequency events 
observed in past attacks as an indicator of future attacks. Factor graph 
analysis makes decisions using contextual information about an 
event, in relation to events observed in the past [12]. 
 

VI.  EVALUATION 
This section presents case studies of attack variants generated from 
three real-world attacks. We illustrate the generation of attack 
variants and analyze the efficiency of several detection techniques 
against the variants. 

A. Experimental setup 
Our experiments were set up using two servers that were run on-site 
at NCSA. Server 1 contained a 24-core Intel Xeon X5650 processor 
running at 2.67 GHz and 32 GB of RAM running at 1,333 MHz. 
Server 2 contained a 12-core Intel Xeon X5650 processor running at 
2.67 GHz and 24 GB of RAM running at 1,333 MHz. Both servers 
run the Ubuntu 14.04 LTS operating system.  

B. Dataset 
We used data on 116 real-world security incidents observed at NCSA 
during a six-year period (2008–2013) as the basis for generating 
attack variants. Most incidents considered in our dataset are related to 
multi-staged attacks, in which an attack spanned a duration of 24 to 
72 hours. Incident data include written incident reports and raw logs. 

For each incident in our dataset, we obtained the incident report 
manually created by NCSA security analysts in free-format text. 
Each incident report contains a detailed postmortem analysis of the 
incident, including alerts generated by NCSA security-monitoring 
tools. Incident reports often include snippets of raw logs associated 
with malicious activities. They may also contain extra information 
about the incident, such as records of emails exchanged among 
security analysts during the incident. For a subset of security 
incidents, we also gathered raw logs for a period of 24 to 72 hours 
before and after the NCSA security team detected the incident. That 
duration of time is sufficiently long to cover most of the traces of 
attacks in our dataset. Since the data-retention policy changed during 
the time when incident data were being collected, the raw logs were 
available only for 23 of 116 incidents. We constructed event 
sequences for all 116 incidents using both raw logs and incident 
reports. Information on each attack is stored in a CSV file. Each row 
in the file specifies the observed time of the event, the event 
identifier, and the identifier for the user who was accountable for the 
event. We used events observed in past incidents at NCSA to provide 
a basis for identifying the mapping of interchangeable events. 

C. Case studies: attack variants analysis 
To analyze the detection efficiency of different techniques, we 
generated and tested attack variants based on the 116 real-world 
attacks reported at NCSA. We selected a relatively sophisticated 
persistent attack to demonstrate our attack-generation technique. 

To provide input for the attack variant generation, we collaborated 
with the NCSA security team to build a map of interchangeable 
events.  Table 4 shows the interchangeable events for the attacks in 
our case studies. For example, in the escalate privileges stage, the 
objective of the attacker is to place an exploit file in the target 
system. That objective can be achieved by downloading the file from 
an HTTP server or an FTP server, or using a more covert channel 
such as IRC, or directly copying the file using a secure copy program 
(scp). We manually constructed the map based on domain knowledge 

Attack stage Description Event (real NCSA alerts) Interchangeable events 

Initial compromise An abnormal login activity ALERT ANOMALOUS HOST ALERT WEAK PASSWORD LOGIN 

ALERT ROOT LOGIN 

ALERT WATCHED COUNTRY LOGIN 

ALERT COMPROMISED PROFILE LOGIN 

ALERT SENSITIVE CREDENTIAL LOGIN 

Escalate privilege A download of a source code 
file 

ALERT SENSITIVE HTTP 
URI 

ALERT SENSITIVE FTP URI 

ALERT SENSITIVE SCP FILE 

ALERT NEW IRC DOWNLOAD 

Establish foothold An attempt to gain persistent 
access 

ALERT NEW SYSTEM 
SERVICE 

ALERT NEW SHELL INIT ENTRY 

Establish foothold An attempt to gain persistent 
access 

ALERT CHANGE 
CREDENTIAL 

ALERT NEW USER 

ALERT NEW SSH AUTHORIZED KEY 

Internal reconnaissance An attempt to connect to 
command and control server 

ALERT COLLECT SYSTEM 
INFO 

ALERT COLLECT SHELL HISTORY 

ALERT READ USER LIST 

Deliver payload Extraction of secret data ALERT VIEW PASWORDS 
FILE 

ALERT VIEW PRIVATE SSH KEY 

Deliver payload Misuse of the target system ALERT HIGH NETWORK 
FLOW 

ALERT HOSTING HIDDEN SPAM 

Table 3. A mapping of interchangeable events (real alerts) for the attacks used in the case studies. 
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of the NCSA system and the network infrastructure. Except for some 
NCSA-specific events, most of the events are common to other 
enterprise systems. Thus, the map can be generalized for other 
systems with slight modifications.  

Using the attack variant-generation procedure (Section IV), we 
generated and validated attack variants for three attacks. Each variant 
generated an event sequence with the same length as the original 
attack. The difference between an event sequence corresponding to 
an attack variant and the one corresponding to the original attack can 
be one or multiple events, which were selected from the map of 
interchangeable events. Note that, if an event in an attack is not listed 
in Table 4 , the event is not interchangeable.  
Case study 1. Credential-stealing attack 
The objective of this attack was to gain persistent access to a shared 
supercomputing system, where multiple users interact with the 
system using remote terminals via the SSH protocol. 
The observed event sequence in the attack is as follows. 
[LOGIN,  
ALERT_ANOMALOUS_HOST, 
ALERT_FAILED_PASSWORD, 
ALERT_CLEAR_HISTORY, 
ALERT_COLLECT_SYSTEM_INFO, 
ALERT_SUDO_BRUTEFORCE, 
ALERT_SENSITIVE_HTTP_URI,  
ALERT_NEW_SYSTEM_SERVICE,  
ALERT_RESTART_SYSTEM_SERVICE] 
In this attack, the attacker obtained credentials to the target system 
(by brute-force guessing of a password or by phishing for the 
password of a legitimate user). Instead of logging in from a 
recognized computer (e.g., the legitimate user workstation), the 
attacker logged in from an anomalous host (ALERT ANOMALOUS 
HOST), which is a computer that has never been used to log into the 
system before. The attacker tried to get root privilege without success 
(ALERT SUDO BRUTEFORCE, ALERT FAILED PASSWORD), 
and then the attacker collected system information such as the kernel 
version, in order to find a suitable exploit. The attacker then 
downloaded an exploit file with sensitive extensions via an HTTP 
GET request (ALERT SENSITIVE HTTP URI) to obtain root 
permissions. After compromising the machine, the attacker installed 
a compromised version of the SSH service to the /usr/sbin directory. 
This service aimed to collect credentials of future user logins and to 
provide the attacker with persistent access to the compromised 
system for further misuse.  

When a legitimate user interacts with the target system, an individual 
event in the analyzed event sequence may occasionally be observed. 
Observation of an individual alert is not a sufficient basis for 
declaring the presence of an attack. For example, ALERT 
SENSITIVE HTTP URI may raise a lot of false positives, e.g., when 
a user downloads a legitimate executable file from the Internet. 
However, observation of the entire event sequence of this incident 
suggests an ongoing attack with the objective of gaining persistent 
access to the target system. 

An example variant of that attack is shown below (the 
interchangeable events are in bold). 
[LOGIN,  
ALERT_MULTIPLE_LOGIN, 
ALERT_FAILED_PASSWORD, 

ALERT_CLEAR_HISTORY, 
ALERT_COLLECT_SYSTEM_INFO, 
ALERT_SUDO_BRUTEFORCE, 
ALERT_SENSITIVE_FTP_URI,  
ALERT_NEW_SHELL_INIT_ENTRY,  
ALERT_RESTART_SYSTEM_SERVICE] 

 By definition of the interchangeable events, each variant is a valid 
attack, because the attacker action corresponding to an 
interchangeable event achieves the same objective as the action 
corresponding to the event in the original attack. In this variant, the 
attacker logs in at the same time as a legitimate user. Since the 
legitimate user is a frequent user of the target system, an SSH 
authentication monitor raised an alert on the concurrent uses of the 
user account (ALERT MULTIPLE LOGIN). From a monitor point of 
view, the event ALERT ANOMALOUS HOST is interchangeable 
with the event ALERT MULTIPLE LOGIN because the monitor 
views the two events an abnormal login activities. Similarly, to 
achieve the goal of delivering a privilege exploit file to the target 
system, this attack variant obtains the file from an FTP server 
(ALERT SENSITIVE FTP URI) rather than from an HTTP server 
(ALERT SENSITIVE HTTP URI). In this variant, the attacker 
installed a backdoor as a startup entry in the Bash init file 
(.bash_profile) for persistent access (ALERT NEW SHELL INIT 
ENTRY). 
Case study 2. Outbound brute-force SSH attack 
The objective of this attack was to misuse NCSA infrastructure to run 
brute-force SSH attacks against an external target system. By using 
this technique, the attacker can hide his or her true identity. 
The observed event sequence in the attack is as follows. 
[LOGIN 
ALERT_FAILED_PASSWORD 
ALERT_COLLECT_SYSTEM_INFO 
ALERT_COLLECT_SHELL_HISTORY 
ALERT_CHANGE_CREDENTIAL 
ALERT_VIEW_PASSWORD_FILE 
ALERT_SENSITIVE_HTTP_URI] 

In this attack, the attacker obtained credentials to the target system by 
brute-force guessing of the password (ALERT FAILED 
PASSWORD), and then the attacker collected command history of 
the system and system information, such as kernel version, in order 
to find a suitable exploit (ALERT_COLLECT_SYSTEM_INFO and 
ALERT_COLLECT_SHELL_HISTORY). In addition, the attacker 
immediately changed the user’s password (using the passwd 
command) to block access by the legitimate user. The attacker then 
attempted to view the password file at /etc/passwd 
(ALERT_VIEW_PASSWORD_FILE) and downloaded a potential 
exploit file with sensitive extensions via an HTTP GET request 
(ALERT SENSITIVE HTTP URI) to obtain root permissions. In this 
incident, the details of outbound SSH attacks were discovered by the 
the NCSA security team and were not captured by the monitoring 
system. Thus, we did not have events for the misuse stage of this 
attack. Regardless, we include this attack in order to demonstrate 
different variants in the initial stage of the attack.   
An example variant of this attack is shown below (the 
interchangeable events are in bold). 
[LOGIN 
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ALERT_FAILED_PASSWORD 
ALERT_READ_USER_LIST 
ALERT_COLLECT_SHELL_HISTORY 
ALERT_NEW_USER 
ALERT_VIEW_PRIVATE_SSH_KEY 
ALERT_SENSITIVE_HTTP_URI] 

In this variant, the attacker obtained a list of active users in the 
system (using command w to identify logged in users and their 
current activities); if no administrator was active, the attacker 
proceeded with the attack (ALERT_READ_USER_LIST). Instead of 
changing the password of the compromised user account, the attacker 
can create a new user to gain persistent access 
(ALERT_NEW_USER); in future attempts, the attacker can log in 
using the new user account. Similarly, to achieve the goal of 
extracting credentials from the compromised system, the attacker can 
read a private SSH key, e.g., the private RSA key stored in 
$HOME/.ssh/id_rsa (ALERT VIEW PRIVATE SSH KEY). 
Case study 3. Misuse the system for Denial of Service attack 
The objective of this attack was to misuse NCSA infrastructure to 
build a botnet and to run Denial of Service attacks against an external 
server.  
The observed event sequence in the attack is as follows. 
[LOGIN, 
ALERT_SENSITIVE_CREDENTIAL_LOGIN,  
ALERT_ANOMALOUS_HOST,  
ALERT_SENSITIVE_HTTP_URI,  
ALERT_INVALID_MIME_EXT, 
COMPILE, 
ALERT_HIGH_NETWORKFLOWS]  

In this attack, the attacker obtained credentials for the target system 
by brute-force guessing the password of a system account named 
mailman, which is used to manage emails. This account had a weak 
password that consisted of seven lowercase characters, allowing the 
attacker to gain access in just a few guesses 
('ALERT_SENSITIVE_CREDENTIAL_LOGIN'). Similar to 
previous attacks, this login also results in the anomalous host alert. 
The attacker then downloaded a file with sensitive extensions via an 
HTTP GET request (ALERT SENSITIVE HTTP URI). In this 
incident, the attacker disguised the file (.c) as an image file (.jpg) 
which resulted in an alert ('ALERT_INVALID_MIME_EXT'). The 
file was compiled and used to run a botnet. The botnet sent a large 
number of UDP packets to launch Denial of Service attacks against 
an external server, which resulted in the alert 
'ALERT_HIGH_NETWORKFLOWS'. An example variant of this 
attack is shown below (the interchangeable events are in bold). 
[LOGIN, 
ALERT_WEAK_PASSWORD_LOGIN,  
ALERT_WATCHED_COUNTRY_LOGIN,  
ALERT_SENSITIVE_HTTP_URI,  
ALERT_INVALID_MIME_EXT, 
COMPILE, 
ALERT_HOSTING_HIDDEN_SPAM]  

In this variant, the attacker logged in from a foreign country that has 
a high level of attack activities ('ALERT WATCHED COUNTRY 

LOGIN’). The attacker used a weak password, that can be found in 
common password dictionaries 
'ALERT_WEAK_PASSWORD_LOGIN’. In the misuse phase, the 
attacker used NCSA infrastructure to send spam emails instead of 
DoS attacks.  

D. Results 
We generated 144, 216, and 288 attack variants for attacks in case 
studies 1, 2, and 3, respectively. Each variant was replayed and used 
to validate the following detection techniques. Although some of the 
techniques are simple, the purpose of our experiment was to 
demonstrate the ability of our framework to assess the efficacy of 
different techniques. 

Signature-based detection techniques only look for a specific 
signature in terms of a file hash or a network packet checksum in 
order to identify a malicious user. In our implementation, the 
signature approach employs a database of file hashes, which can be 
provided by an open-source antivirus program, such as ClamAV. We 
assume a signature-based IDS that only inspects downloads that use 
HTTP protocol. When an attacker downloads a file with a sensitive 
extension using the HTTP protocol (ALERT SENSITIVE HTTP 
URI), the file is checked for its signature. The attacker can evade that 
detector by using other protocols, such as SCP, FTP, or IRC. 
Frequency-based detection techniques look for the most frequent 
event observed in the past attacks as an indicator of future attacks. In 
our NCSA dataset, one of the most frequent events was ALERT 
ANOMALOUS HOST. In the initial compromise stage of the 
observed attacks, attackers often logged in from a remote location or 
used a device different from that of the legitimate user. That action 
resulted in the event ALERT ANOMALOUS HOST. When such an 
event is found in a variant, the frequency-based technique detects an 
attack. 

Factor graph analysis is a sophisticated technique. It not only looks 
for an individual event, but also analyzes the entire event sequence 
collectively. A factor graph-based detection tool, such as 
AttackTagger [12], constructs graph events linked by factor 
functions; each function identifies a signal of how the events relate to 
the suspiciousness of the user, e.g., the user account has been 
compromised in the past. An entire sequence of hidden-user states is 
inferred, based on observed user behaviors (represented as an event 
sequence generated by the monitoring system) and defined factor 
functions. This technique works with multistage attacks because it 
considers contextual information about an event in relation to events 
observed in the past.    
Results (Table 5) show that factor graph analysis can detect more 
than half of the attack variants, whereas both the signature-based 
approach and frequency-based approach detect a smaller number of 
attack variants. We discuss the attack detection rate of the evaluated 

 Attack 1 Attack 2 Attack 3 

Signature-based 36/144 
(25%) 

54/216 
(25%) 

72/288 
(25%) 

Frequency-based 24/144 
(16.7%) 

0/216 
(0%) 

96/288 
(33.3%) 

Factor-graph-
based 

108/144 
(75%) 

108/216 
(50%) 

186/288 
(64.6%) 

Total number of 
variants 

144 216 288 

 
Table 4. Attack variant detection results. There is no technique 

that can detect all the variants. 
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techniques in the following paragraphs. 

Because the signature-based technique relies on a specific signature 
(i.e., the event ALERT SENSITIVE HTTP URI), it does not work 
when an attacker delivers an exploit using a different protocol, e.g., 
using SCP to evade deep packet analysis of file content. The attacker 
can obfuscate file content to evade signature analysis. Obfuscation 
services, e.g., ExeCrypt, can obfuscate an executable file and test to 
confirm that the obfuscated file is not detected by multiple antivirus 
engines [22]. The signature-based technique achieved only a 25% 
detection rate.  

The frequency-based technique achieved a low detection rate (up to 
33.3%) because it relies on only a single event, ALERT 
ANOMALOUS HOST, for detection. In case study 2, the attacker 
did not raise any anomalous host alert, possibly because the attacker 
resided in the same network as the legitimate user. Advanced 
attackers can hijack an existing SSH session of a legitimate user, thus 
avoiding alerts on abnormal logins [21].  

The factor graph analysis obtained a higher detection rate (up to 
75%) compared with the signature-based and frequency-based 
techniques, because the factor functions were designed to be 
insensitive to variants. For example, a factor function treats two 
slightly different events (e.g., ALERT SENSITIVE FTP URI and 
ALERT SENSITIVE HTTP URI) in the same way.  

VII.  RELATED WORK 
Initial work on intrusion detection focused on building monitoring 
infrastructure for computer and network systems [23]. At the host 
level, syslog (Linux) and Security Log (Windows) are used to record 
activities of applications and system services. For example, Snoopy 
is a library that logs all executed commands and arguments on a host 
system to syslog for auditing purposes [24]. Since more machines are 
being provisioned in the cloud computing environment, recent work 
has focused on VM monitoring (e.g., for rootkit detection, using 
introspection techniques [25]). Our approach complements those 
studies by using alerts generated by such techniques to generate 
attack variants and applying them to test the efficiency of monitoring 
and detection techniques.    
As attacks have become more sophisticated, much work has been 
dedicated to the forensic analysis of attacks, which is valuable for 
understanding attack development. With the rise of advanced 
persistent threat (APT) attacks, top security companies regularly 
release reports on high-profile attacks (e.g., Stuxnet [26]). In the first 
stage, such attacks often make use of stolen credentials to gain initial 
access to a target system. Detailed analysis of this stage has been 
done by Sharma in [14], where such attacks are categorized as 
credential-stealing attacks. In addition, recent work has focused on 
preempting such attacks in the initial stages and analyzing obfuscated 
network attack vectors [12][27].  
Recent research has contributed to reproducible attacks. Exploit 
codes of known attacks have been organized by the Metasploit 
project and open-source communities on GitHub [28]. At NCSA, the 
OpenNSM project [29] is creating Linux container images of 
different monitoring software. These studies, however, do not 
produce a unified end-to-end platform.  

VIII.  CONCLUSION 
In this paper, we presented a framework for generating attack 
variants from known attacks, replaying of such attacks in a controlled 
testbed environment, and the validation of example detection 
techniques against 648 generated attack variants. Our attack replay 
framework is an important step toward providing a platform for 

attack replay in a controlled environment to facilitate validation of 
monitoring tools, security policies, and detection techniques in an 
open environment and in the presence of realistic attack scenarios. 
The generated variants provide an additional dimension for assessing 
the efficacy of various detection techniques.  
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