
stealthML: Data-driven Malware for Stealthy Data
Exfiltration

Keywhan Chung1, Phuong Cao2, Zbigniew T. Kalbarczyk1, and Ravishankar K. Iyer1

1Coordinated Science Laboratory, University of Illinois at Urbana-Champaign
2National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Abstract—The use of machine learning methods have been
actively studied to detect and mitigate the consequences of
malicious attacks. However, this sophisticated technology can
become a threat when it falls into the wrong hands. This paper
describes a new class of malware that employs machine learning
to autonomously infer when and how to trigger an attack payload
to maximize impact while minimizing attack traces. We designed,
implemented, and demonstrated a smart malware that monitors
the real-time network traffic flow of the victim system, analyzes
the collected traffic data to forecast traffic and identify the most
opportune time to trigger data extraction, and optimizes its
strategy in planning the data exfiltration to minimize traces that
might reveal the malware’s presence.

I. INTRODUCTION

In recent years, researchers and practitioners in the cyber
security domain have been investigating and demonstrating the
use of machine learning (ML) methods to detect and mitigate
the consequences of malicious attacks. However, the possibil-
ity that adversaries might utilize the same ML technology to
advance malicious intentions and conceal suspicious activities
has been largely ignored. In this paper, we present a new threat
model, stealthML, and demonstrate that data-driven malware
can automatically reconnoiter the target system and customize
the attack strategy to achieve the attacker’s objectives (e.g.,
exfiltrate sensitive data) and mimic normal/benign user behav-
ior so to hide attacker’s presence in the system. In enabling
this threat, we used an ensemble of ML methods to conduct
monitoring, function development, and inference, which in
the present case, is not possible for simple methods (e.g.,
at a comparable level of accuracy). We demonstrate, in the
context of data breach attacks, that stealthML (substantially
independent of the attacker) can autonomously train a model
inside the victim (using LSTM) and adapt the model to
dynamic changes in the system (using DQN).

In our hypothetical attack model, the goal of stealthML is to
copy the sensitive data from the victim system to the attacker’s
data store while disguising the exfiltration traffic as legitimate
network traffic (e.g., HTTP). StealthML consists of two ma-
chine learning modules. The forecast module tries to learn
a model that can best predict the pattern of normal network
activities in the victim system. This module employs LSTM
(long short-term memory) recurrent neural network to forecast
network traffic based on real-time system measurements. The
exfiltration module derives the best exfiltration action given
the forecast and past experience in interacting with the victim

system. The module utilizes a deep Q-learning (DQN) method
to empirically optimize a decision model. We encoded attacker
intent and knowledge into a reward model.

To assess the performance of stealthML, we executed it in
National Center for Supercomputing Applications’s (NCSA)
science demilitarized zone (DMZ) to contain the unforeseen
impacts on the system and its user. Experimental results
demonstrate that stealthML can conceal its malicious intent
(under the noise of normal behavior) while accelerating the
attack. This threat can challenge current protection meth-
ods that look for abnormal behavior in systems [16], [17].
Furthermore, stealthML not only reconnoitered and inferred
actionable intelligence that fit the victim system but also
transferred the intelligence and experience collected from one
victim to another to improve the malware performance in
future attacks. If such a threat becomes a reality, targeted
attacks will no longer be restricted to targets that attackers can
reach (i.e., communicate with); instead, intelligent malware
will be able to spread itself automatically across multiple
victims (like worms and viruses) and challenge the operators,
as (i) the threat customization will be automatically driven by
the victim’s local data, and (ii) the intelligence will accumulate
as the malware morphs and passes through multiple victims.
Our findings reveal a need to proactively investigate new
detection and mitigation methods that target such new threats.

II. PROBLEM AND MOTIVATION

A. Motivation

Prior high-visibility data breach attacks (e.g., SolarWinds
[6], Yahoo [8], Equifax [14], Target [15], and Capital One
[7]) were successful in stealing and exposing sensitive data
despite employing rudimentary malware or human-driven at-
tack strategy. Furthermore, recent ransomware attacks – with
severe impact across industries – are deploying double extor-
tion where the attackers exfiltrate data before encryption for
other purposes [12]. However, as more security monitors and
policies are being deployed to protect systems, attackers face
a higher risk of detection.

Attackers performing data breach attacks put effort into
disguising their data exfiltration traffic as normal user activity.
For instance, one can utilize network protocols that are less
obvious [6], [14], or try to choose an optimal time that makes
detection challenging [15]. Reducing the data exfiltration rate



Fig. 1: STL decomposition of network traffic in 2019.

or size is another method commonly found in recent inci-
dents [7], [8], [14]. Reconnaissance plays a critical role in
deriving the strategy that best fits the specifics of the victim.
However, such a manual procedure restricts the attacker in
certain respects. For instance, an extended period of remote
connection to a target system puts the attacker at risk of being
exposed. Furthermore, with a human playing a critical role
in the attack, it is only possible to target systems that are
remotely accessible through the network; the threat cannot be
generalized to extended targets. Fortunately, that limitation has
restricted the impact of data breach attacks to certain victims.
However, automation of the process would free the attacker
from those restrictions, and the attack, encoded with learning
methods, could travel across systems that a human attacker
could not have reached.

A well-known intuition would be that there can be seasonal
trends and patterns that are closely related to business hours
and annual seasons [1], [9]. As depicted in Figure 1, we find
that, in fact, the network traffic activity can be decomposed
(using STL decomposition [5]) into what turns out to be daily
and weekly seasonal patterns accompanied by trends. Such
patterns, which match common intuition, could be considered
either global patterns expected across multiple systems, or
local patterns specific to each victim. A usual traffic pattern
can be described as

yt = St,global + Tt,global︸ ︷︷ ︸
global pattern

+St,local + Tt,local︸ ︷︷ ︸
local pattern

+Rt (1)

where St, Tt, and Rt represent seasonal patterns, trends,
and residuals, respectively. A larger residual indicates noisier
traffic which challenges anomaly based detectors that try to
represent traffic behavior as a model. If adversaries could
design malware that automatically infers such patterns, they
could craft their attack payloads to remain within the victim’s
noise boundaries to prevent the introduction of any anomaly
that could hint at the attack’s existence.

B. Threat model

In discussing stealthML, we assume that:
• The victim system is a web server and has (i) HTTP/HTTPS

network packets going through its network interface as the
normal network activity, and (ii) an IP address that is known
to the attacker. Attackers can easily use network scanning

to identify targets, their IP addresses, and the services that
they offer.

• The attacker (i) can get privileged (remote) access (e.g.,
through phishing, stolen credentials, or insider attack) to the
victim system, (ii) has set up a server to receive the extracted
data, and (iii) can establish network connections between
the victim system and the attacker’s server to transmit the
data.

• StealthML (i) can be installed and executed in the target
system, (ii) has access to target data (that the malware would
exfiltrate) in the victim system, (iii) has privileges to capture
the network interface of the victim system to monitor the
genuine network traffic and send extracted data through the
interface, and (iv) does not have prior knowledge regarding
the victim’s detectors or defense systems.

III. SYSTEM OVERVIEW

We consider the victim to be a typical computing system
that stores a large amount of data. The attacker performs data
breach attacks by setting up a server to receive network packets
that contain the extracted data sent by the malware (attacker
data store), gaining root privileges on the victim system with
stolen credentials, and installing (and later executing) in the
victim system stealthML, which is responsible for control-
ling the data exfiltration to the attacker’s data store. Once
stealthML is installed in the victim system, it automatically
drives the attack.
Victim system. In this study, we consider a web server as
an example of a typical victim system. Systems that host web
services through the public network are often a tempting target
for attackers trying to hide their existence behind legitimate
users. A web server, in reality, might not host sensitive data.
However, in recent data breach incidents [6], [14], we have
seen situations in which attackers utilized HTTP to transfer
data out of the victim. Otherwise, one can assume that the
attacker (or malware) has collected data from other victims
within the internal network of the target institution (often by
lateral movement) and archived it in the web server (i.e., as
the front end of the breach) for extraction.
The attacker data store is a system outside the monitoring
boundary of the target institution, under full control of the
attacker. The goal of the attacker (and the smart malware) is
to copy the data in the victim system to the attacker’s data
store while disguising the exfiltration traffic as legitimate web
traffic. To prevent a single IP from dominating a significant
portion of the traffic (which could reveal the attack), one can
distribute the exfiltration traffic to multiple data stores [6].
Network traffic data. Our work is based on real data collected
from a large-scale computing infrastructure (NCSA). The data
consist of logs on network connections and HTTP traffic. The
data were collected by network monitors deployed next to the
border router of the infrastructure from April to June 2019, and
from January to October 2020. On average, 23K connections
were made each day between ∼3,000 unique hosts. Using
the HTTP logs collected by network monitors at NCSA, we
replayed the web requests and collected packet-level traffic

2



Fig. 2: Smart data exfiltration malware logic.

information for this study. We discuss details of the traffic
replay in Section V.

IV. APPROACH: STEALTHY DATA EXFILTRATION

We consider the activity of the malware and its interaction
with the victim system in the context of game theory and
seek the optimal solution using reinforcement learning (RL).
The victim system (or its detection system, in particular) is
the environment. Benign users and malware are the players in
this game. In our scenario, unlike a conventional game, benign
users have no conflict of interest with other players, and there
is no decision making in taking actions. On the other hand,
malware has a clear goal to derive the best action in the context
of when and how much data to exfiltrate while minimizing the
risk of transitioning into a malicious state. If the combined
actions exceed what the operator considers normal by more
than the noise boundary for a number of consecutive time
steps, the operator will consider it abnormal and investigate
the case, which will likely reveal the malware. In making the
decision on the size of data exfiltration, stealthML is provided
with only partial information. To be exact, the malware is not
aware of the current state.
Smart malware logic. As shown in Figure 2, stealthML
consists of three modules: the traffic monitor module, the
forecast module, and the data exfiltration module. The traffic
monitor module parses measurements (observations) from the
system that can benefit the forecasting module. The forecasting
module trains a model that can predict the likely state, given
the observations from the traffic monitor. The exfiltration
module manages the decision model to determine the optimal
action, given the observations and the state prediction. Each
module is implemented in a separate thread such that with
multithreading, all of the modules can execute simultaneously.

A. Network traffic monitor

As the malware executes, the network monitor (using
tcpdump) listens to the network interface of the victim
system and collects network packets of type HTTP/HTTPS
that are being received or sent by the victim server.

The packet parser transforms the network packet logs and
stores them in shared memory so that the forecasting module
can read its input (i.e., traffic rate per minute). To reduce
memory usage and improve computational efficiency, we fixed
the shared memory size. Data are stored as a queue in the

shared memory whose length is equal to the length of our
observation window (which has length N , see Figure 3) of
the network traffic. When the observation window moves
forward in time, the earliest observations are dequeued, and
observations are enqueued.

B. Forecast module

The goal of the forecast module is to analyze the normal
traffic in the victim system and predict what is likely to be
considered normal traffic in the next time interval. Given the
observation passed by the traffic monitor module as input, the
forecast model performs real-time analysis to predict the traffic
for the next time interval.
Long Short Term Memory (LSTM). To train the forecast
model, we utilized LSTM, a well-studied machine learning
method that is commonly used in time series forecasting [10].
LSTM is a specific kind of recurrent neural network (RNN)
that addresses the vanishing gradient problem of RNNs, and
hence is less sensitive to the gap length. Because of that
property, LSTM is often described as a neural network ar-
chitecture that remembers values over arbitrary time intervals.
Such remembrance is enabled by a set of gates that compose a
single memory cell: an input gate, an output gate, and a forget
gate. A generic representation of an LSTM memory cell can
be found in Figure 3.
Objective. The architecture of our LSTM and its mapping
to the training data set are depicted in Figure 3. Time series
data are the data recorded by the traffic monitor module in
the shared memory. A data point Xt at time t consists of
features used for training the model. The features are generic
to any system, such that a model trained in one system could
be transferred and used in any other victim.

Let Xt represent the observation at time t. The problem
is to train an LSTM model, M(Xt), that forecasts the traffic
volume for the next time interval, given the observations from
the past N time intervals. In training the model, the goal is to
capture the global pattern shared across victims (see equation
1) such that when provided with the same feature space from
victims i and j, χi, the learning agent infers models that satisfy

Mglobali(X) ≈ Mglobalj (X) (2)
Then, given a model inferred from victim i, the training process
only needs to tune the transferred model to capture the local
patterns specific to the new victim. Hence, one can accelerate
the process of inferring the model for victim j (relative to
inferring it from scratch) by utilizing the model learned from
victim i and fitting the pre-trained model to the new victim’s
specifics (i.e., Mlocal+ϵ). Further, as the malware accumulates
observations from multiple victims, the global model inferred
from them becomes more generic.
Training. Regardless of whether we start from scratch or start
with a pre-trained model transferred from another system, we
need to fit the model to the specifics of the local system (just
as an attacker would reconnoiter the system and customize
the attack payload). For each training instance, the model is
provided with training data from an observation window of
length M (see Figure 3). After each training instance, the

3



Fig. 3: LSTM model and its training/validation.

window is shifted by one time interval. Given the data set, the
forecasting module normalizes the measurements so that all
features are within the same range. Because the absolute error
is in normalized scale, we inverse-transformed it to its original
unit. The training process is repeated until the absolute error
reported during the training process reports negligible change.

C. Data exfiltration

Deep Q-Learning (DQN). To derive the optimal action that
satisfies the attacker’s intent, we used Deep Q-Network. In
Q-learning, we model the decision process in the context of
quality of states (Q(S, a)), an abstraction of the rewards (i.e.,
immediate reward, R(S, a), and future rewards combined) one
can expect by taking an action in the current state. Given
the decision model and current state, the DQN agent chooses
the action, a, that maximizes Q(S, a). Because stealthML
has access to limited information (partial observation, X), we
cannot define the full decision model for the malware. Instead,
we utilize a Deep Q-network which represents the decision
model as a neural network, Q̂(X, a), and tune the network
through training.
Objective. The goal of the forecast module is to predict the
normal traffic pattern at its best. Depending on various factors,
including the significance of the pattern (e.g., seasonality or
trend), the performance of the forecast engine could vary.
To determine the optimal action for the malware at each
time instant, we utilized a decision model trained using deep
reinforcement learning (DRL). We encoded the attacker’s
preference into a reward model that evaluates and determines
the consequences of the data exfiltration module’s action. As
depicted in Figure 4, our DRL agent learns how much weight
(or trust) to put on the forecast module’s suggestion from
experience (i.e., the collection of previous actions taken and re-
sulting rewards). And using this model, the exfiltration module
determines the action with the most promising predicted result
and performs the exfiltration accordingly. Our agent’s action
set consists of discounting the forecast, exfiltrating more than
the forecast, or deciding not to exfiltrate data.

V. EXPERIMENT DESIGN

To assess stealthML, we set up a testbed in a production
system of NCSA. All network packets were passed through
the same pipeline as for any other production system, and the

Fig. 4: Use of DRL to determine an optimal exfiltration action.

Fig. 5: Experimental setup.

activities in the testbed were monitored by the security team.
Figure 5 depicts the experimental setup.

Security testbed. In experimenting on our threat model, we
utilize a security testbed that runs alongside production sys-
tems at NCSA. The testbed supports features for running host
machines with specific configurations (and vulnerabilities)
while assuring that any impact introduced by our experiments
is contained within the testbed. Using the testbed, we can
run our experiments in a realistic setting while assuring that
normal users are not affected.

Victim system setup. In the testbed, we set up two web
servers, which were copies of web servers in service at NCSA.
The servers were the top two in web traffic volume among
systems at NCSA that were accessible from the public network
without authentication. In our experiment, these servers were
the victims in which the malware was installed. In addition
to including copies of the real servers’ web pages, we also
placed a large file (a 5 GB binary image) in each system to
represent the data of interest that the adversaries are trying to
exfiltrate from the corporate network.

4



TABLE I: Comparison of data exfiltration methods.
Attack
strategy

Detector performance (false negative / false positive) (%) Exfiltration
time (hr)z=1 z=0.1 ARIMA LSTM

Benign traffic N/Aa / 14.9 N/A / 38.6 N/A / 21.1 N/A / 14.8 N/A

Brute-force 0 / 0b 0 / 0 0 / 0 0 / 0 0.14

Low-and-slow 90 / 14.2 88.8 / 37.7 12.73 / 19.8 5.67 / 14.1 164

LSTM only 98.1 / 12.2 58.8 / 37.8 52.2 / 18.2 15.7 / 14.3 171

LSTM + DQN 95.6 / 10.4 55.8 / 31.2 51.1 / 17.1 19.2 / 16.5 147

aDoes not include attack traffic, hence, no positive case to detect.
bAttack is always taking place and, hence, there cannot be a false alarm.

Traffic replay. We implemented a traffic replay tool that
took security logs for inbound HTTP traffic (collected using
the Zeek [18] IDS) as inputs and replayed the web requests
while preserving the latency between requests. In replaying the
requests, we set the victim system (in the testbed) to serve as a
proxy so that the traffic would be sent to the victim system. In
our experiment, the traffic replay tool represented the benign
users in the original systems. Note that in our experiments,
because (i) we only had HTTP traffic that we can replay to
represent regular system activity, and (ii) academic systems
attract less web traffic than commercial web servers, the traffic
data available to the malware was relatively sparse. This
difference between our experimental system and commercial
web servers has implications for the performance of stealthML
as discussed in detail in Section VI-B.
Anomaly detectors. We considered three representative
anomaly detection methods: a z-score-based anomaly detector,
an ARIMA-based detector, and an LSTM-based detector. A
z-score-based detector considers an observation that is z
standard deviations from the mean to be an anomaly. While
z-score based detector is more of a rule-based detector with
a fixed threshold, Autoregressive integrated moving average
(ARIMA) is a well-established statistical method, known to
be effective in predicting the next value in a time series. For
an LSTM-based detector, we take advantage of the fact that
the defender is less restricted (than an intruder who has to hide
its presence) to the use of computational resources for which
there is a strong need to detect anomalies. Hence, we utilized
richer (i.e., longer memory-cell chains and more layers in the
neural network) LSTM architecture for detecting anomalies.

VI. RESULTS

A. Smart data exfiltration vs. current approaches

In Table I, we compare the performance of different attack
strategies. As a baseline, we present how the detectors perform
against benign traffic. Ideally, the detectors should not raise
an alert for benign traffic. Because of the noisy nature of web
traffic, we see that the detectors are challenged with high false
positive rates. Brute-force attack had an advantage in dramat-
ically reducing the exfiltration time. For this attack, even the
simplest z-score based detector would not miss a single action
of the attack. However, because of the exceptional speed, the
attacker or malware could have accomplished its goal and left
the victim system, by the time the system operator takes action.
Hence, such a strategy would be effective if there is a fix-sized

data file (of reasonable size) that the adversary is targeting but
not if the attacker is expecting a stream of new data generated
every day and wants to keep a foothold on the system for
an extended period. A “low-and-slow” strategy significantly
reduced the risk of revealing malicious activities. However, as
in the Target data breach attack [15], which took 2 weeks to
exfiltrate 11 GB of data, it took roughly 7 days to exfiltrate
our 5 GB of synthetic data.

StealthML reduces further the attack traces. For instance,
it was barely detected by the z = 1 detector with a miss
rate of 95% and performed better than “low-and-slow” when
played against detectors with a more sophisticated method.
The exfiltration time, unexpectedly, was longer than the “low-
and-slow” approach when we deployed LSTM forecast only,
but as we discuss in Section VI-B, such results are specific
to the characteristics of the victim system. Furthermore, by
deploying the DQN-based decision module, we can acceler-
ate the data exfiltration while still hiding attack traces (see
LSTM+DQN). The DQN achieves such improvement in per-
formance by taking a more aggressive action (i.e., more data
exfiltrated per action than suggested by the LSTM forecast)
when expecting less benign traffic.

In our set of experiments, LSTM-based detectors outper-
formed detectors based on simpler methods, such as threshold-
based methods or ARIMA, in detecting abnormal traffic pat-
terns. The difference in performance becomes more significant
as the attacker deploys a more sophisticated method. Our
experimental results demonstrate how sophisticated detection
methods would result in requiring attackers to explore com-
plicated methods to bypass detection. Hence, we need to be
prepared and should be proactive rather than reactive.

B. Data exfiltration time vs. traffic volume

In Section VI-A, we did not observe a significant difference
in the data exfiltration rate for the three attack strategies
(i.e., low-and-slow, LSTM forecast only, and LSTM + DQN)
presented in Table I. For example, LSTM+DQN strategy
reduces the data exfiltration time by about 10% as compared
with low-and-slow approach which took 164 hrs. We find the
reason for this relatively small difference between the two
attack strategies from the low utilization of the overall network
bandwidth due to very limited user activities. The systems that
we mirrored as a victim are located at an academic institution,
and the volume of benign web activities is relatively smaller
as compared with busy commercial web servers. To validate
our conjecture, we assessed how the time to data exfiltration
changes for amplified benign traffic. As depicted in Figure
6, we find that stealthML (unlike brute-force and “low-and-
slow” attack strategies) accelerates exfiltration. For instance,
as we amplify the benign traffic volume by a factor of five,1

our LSTM+DQN attack strategy reduces the data exfiltration
time by 80% from 147 to 29. Hence, when deployed in a busy

1To put such amplification in perspective, a single Apache server can handle
160 requests per second. On average we have less than one request per second
in our data set. Hence, even our amplified traffic is merely a fraction of the
usual web traffic in commercial servers.

5



Fig. 6: Data exfiltration time for amplified benign traffic.

system with sufficient user activity, stealthML can achieve an
exfiltration rate comparable to the brute-force approach while
maintaining the low visibility to security monitoring tools.

C. Minimal footprint on system behavior

Despite the use of sophisticated methods, our approach does
not introduce significant traces that can reveal the malware.
In designing the trainers, we restricted the queue size and,
hence, the memory usage does not exceed 1 GB throughout the
process. Furthermore, because the model is updated only once
every time interval (i.e., 5 minutes), the most computation-
heavy thread for training the model remains idle 99% of the
time during the attack, waiting for the traffic monitor to collect
the traffic information for the next time window.

VII. RELATED WORK

A number of previous works have considered ML-based
threats on cyber infrastructure. However, unlike stealthML,
such an approach was either limited in adapting their attack
strategy to the specifics of the target system or the learning was
conducted offline. In [3], the authors exploit vulnerabilities of
a surgical robot and make use of ML to mimic an accidental
failure so that the malicious intent is hard for the system
administrator to identify. Similarly, in [2], the authors take
advantage of statistical analysis to disguise malicious actions
as accidental failures by inferring attack strategies from CPS
measurement data. DeepLocker [13] leverages a deep neural
network to detect the target and disguises itself as benign
software before a target is detected. A thorough overview of
machine learning-based malware can be found in [4], [11].

VIII. DISCUSSION

Parameter optimization. The goal of our project was to
demonstrate how machine learning can advance cyber threats.
Therefore, the parameters (e.g., length of the observation win-
dow, number of hidden layers, training data size, and number
of epochs per training instance) were not fully optimized.
Despite the lack of optimization, experimental results show
that the trained model could effectively disguise the data
exfiltration traffic within the noisy regular traffic.
Monitoring at the enterprise level. StealthML targeted the
normal behavior of a particular victim system. However, in
practice, network-level monitoring audits network activities
(especially their volume) at the border router at an aggregated

scale. Hence, the traffic utilized to exfiltrate the data is even
more likely to be buried under the aggregated noise from the
entire enterprise. Therefore, to provide visibility to the traffic
associated to attacks like stealthML, the monitors or detectors
must be placed closer to the victim systems.
Limitations. Our victims (and the data sets collected from
them) were limited to (copies of) systems in an academic
institution in which the HTTP traffic was relatively sparse,
compared to commercial web servers. (E.g., in our data set
for victim B, we encountered zero HTTP traffic 62% of the
time.) This limitation resulted in weak trends and patterns in
user traffic. We expect that stealthML would be more efficient
in a commercial web server with heavy web activities.

REFERENCES

[1] Roberto Casado-Vara, Angel Martin del Rey, Daniel Pérez-Palau, Luis
de-la Fuente-Valentı́n, and Juan M Corchado. Web Traffic Time
Series Forecasting Using LSTM Neural Networks with Distributed
Asynchronous Training. Mathematics, 9(4):421, 2021.

[2] Keywhan Chung, Zbigniew T Kalbarczyk, and Ravishankar K Iyer.
Availability Attacks on Computing Systems through Alteration of Envi-
ronmental Control: Smart Malware Approach. In Proc. of the ACM/IEEE
Intl. Conf. on Cyber-Physical Systems, pages 1–12. ACM, 2019.

[3] Keywhan Chung et al. Smart Malware that Uses Leaked Control Data
of Robotic Applications: The Case of Raven-II Surgical Robots. In
Proc. of the Intl. Symp. on Research in Attacks, Intrusions and Defenses.
USENIX, 2019.

[4] Keywhan Chung et al. Machine Learning in the Hands of a Malicious
Adversary: A Near Future If Not Reality. In Game Theory and Machine
Learning for Cyber Security. Wiley, 2021.

[5] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma
Terpenning. STL: A Seasonal-trend Decomposition. Journal of official
statistics, 6(1):3–73, 1990.

[6] FireEye. Highly Evasive Attacker Leverages SolarWinds Supply Chain
to Compromise Multiple Global Victims With SUNBURST Backdoor,
2020.

[7] Karen Flitter, Emilu; Weise. Capital One Data Breach Compromises
Data of Over 100 Million, 2019.

[8] Nicole Goel, Vindu; Perlroth. Yahoo Says 1 Billion User Accounts Were
Hacked, 2016.

[9] Hao He and Niklas Karlsson. Identification of seasonality in internet
traffic to support control of online advertising. In Proc. of the American
Control Conference, pages 3835–3840, 2019.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 11 1997.

[11] Nektaria Kaloudi and Jingyue Li. The AI-Based Cyber Threat Landscape
: A Survey. ACM Computer Survey, 53(1):1–34, 2020.

[12] Quintin Kerns, Bryson Payne, and Tamirat Abegaz. Double-Extortion
Ransomware: A Technical Analysis of Maze Ransomware. In Proc. of
the Future Technologies Conference, pages 82–94. Springer, 2021.

[13] Dhilung Kirat, Jiyoung Jang, and Marc Ph. Stoecklin. Deeplocker –
Concealing Targeted Attacks with AI Locksmithing. In Blackhat USA,
2018.

[14] Nick Marinos and Michael Clements. Actions Taken by Equifax and
Federal Agencies in Response to the 2017 Breach. Technical report,
New York, NY, USA, 2018.

[15] Committee on Commerce Science and Transportation. A “Kill Chain”
Analysis of the 2013 Target Data Breach. In The Target Store Data
Breaches: Examination and Insight, pages 41–60. 2014.

[16] Md Salik Parwez, Danda B. Rawat, and Moses Garuba. Big Data
Analytics for User-activity Analysis and User-anomaly Detection in
Mobile Wireless Network. IEEE Trans. on Industrial Informatics, 2017.

[17] Duygu Sinanc Terzi, Ramazan Terzi, and Seref Sagiroglu. Big Data
Analytics for Network Anomaly Detection from Netflow Data. In Proc.
of the Intl. Conf. on Comupter Science and Engineering, 2017.

[18] The Zeek Project. The Zeek Network Security Monitor, 2020.

6


