
Reliability and Security Monitoring of Virtual
Machines Using Hardware Architectural Invariants

Cuong Pham, Zachary Estrada, Phuong Cao, Zbigniew Kalbarczyk, Ravishankar Iyer
University of Illinois at Urbana-Champaign

{pham9, zestrad2, pcao3, kalbarcz, rkiyer}@illinois.edu

Abstract—This paper presents a solution that simultaneously
addresses both reliability and security (RnS) in a monitoring
framework. We identify the commonalities between reliability
and security to guide the design of HyperTap, a hypervisor-level
framework that efficiently supports both types of monitoring in
virtualization environments. In HyperTap, the logging of system
events and states is common across monitors and constitutes
the core of the framework. The audit phase of each monitor is
implemented and operated independently. In addition, HyperTap
relies on hardware invariants to provide a strongly isolated root
of trust. HyperTap uses active monitoring, which can be adapted
to enforce a wide spectrum of RnS policies. We validate Hy-
perTap by introducing three example monitors: Guest OS Hang
Detection (GOSHD), Hidden RootKit Detection (HRKD), and
Privilege Escalation Detection (PED). Our experiments with fault
injection and real rootkits/exploits demonstrate that HyperTap
provides robust monitoring with low performance overhead.

I. INTRODUCTION

Reliability and security (RnS) are two essential aspects of

modern highly connected computing systems. Traditionally,

reliability and security tend to be treated separately because of

their orthogonal nature: while reliability deals with accidental

failures, security copes with intentional attacks against a

system. As a result, mechanisms/algorithms addressing the

two problems are designed independently, and it is difficult

to integrate them under a common monitoring framework.

Addressing RnS aspects separately may lead to unforeseen

consequences. For example, a reliability monitor (e.g., a

heartbeat server) may have a vulnerability that allows remote

attackers to exploit the system. On the other hand, a security

monitor may introduce a new failure mode that the current

system is not designed to handle. Furthermore, different mod-

ules’ design and implementation may not be compatible. For

instance, suppose two monitors both require exclusive access

to a resource, e.g., a performance register. Such monitors

cannot co-exist in the same system. This situation places

system designers in a difficult position, in which they must

trade-off one essential quality for another. In a milder scenario,

the system has to pay a combinational cost, e.g., development,

deployment, and runtime performance costs, of both solutions.

In this paper, we identify the commonalities between reli-

ability and security monitoring to guide the development of

suitable frameworks for combining both uses of monitoring.

We apply our observations in the design and implementation

of the HyperTap framework for virtualization environments.

A monitoring process can be divided into two tightly

coupled phases: logging and auditing [1]. In the logging phase,

relevant system events (e.g., a system call) and state (e.g.,

system call parameters) are captured. In the auditing phase,

these events and states are analyzed, based on a set of policies

that classify the state of the system, e.g., normal or faulty.

Based on that model, we observe that although RnS monitors

may apply different policies during the auditing phase, they

can utilize the same event- and state- logging capability. This

observation suggests that the logging phases of multiple RnS

monitors need to be combined into a common framework.

Unification of logging phases brings further benefits, namely, it

avoids potential conflict between different monitors that track

the same event or state, and reduces the overall performance

overhead of monitoring.

A unified logging framework for RnS must be founded on

an isolated root of trust and have support for active moni-
toring. Current virtual machine monitoring techniques, e.g.,

Virtual Machine Introspection (VMI), either exhibit neither of

those two properties, or offer only one at time. An isolated

root of trust asserts that the source of captured events and

state cannot be tampered with by actors inside target systems.

Traditional VMI techniques fail on that condition, as they

choose to rely solely on the guest Operating System (OS) to

report its own state. An example of that violation is presented

in [2] (the issue is further discussed in Section IV-B). For RnS

monitoring, active monitoring (or event-driven monitoring) has

been shown to be more advantageous than passive monitoring

(or state polling), as the former can capture operational events

in addition to the system’s state[3]. Furthermore, active moni-

toring can overcome the time sensitivity of passive monitoring,

e.g., it can detect short latency failures and transient attacks

[4], as further illustrated in Section IV-C.

In order to fulfill the requirements stated above, we present

a framework implemented at the hypervisor level called Hy-
perTap, that provides an event logging infrastructure suitable

for implementing various types of RnS policies for Virtual

Machines (VMs). In HyperTap, the logging phase is common

for all monitors and constitutes the core of the framework. The

auditing phase of each monitor is implemented and operated

independently. To achieve an isolated root of trust, Hyper-

Tap employs hardware architectural invariants, which cannot

be modified by attackers and failures inside VMs. These

invariants hold under assumptions about the trustworthiness

of the hypervisor and hardware stated in Section V-A. In

order to support active monitoring and intercept a wide range

of system events, HyperTap utilizes the Hardware Assisted

Virtualization (HAV) event generation mechanism. The events

are then delivered to registered auditors which realize a variety

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.19

13

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.19

13

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.19

13

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.19

13

of RnS monitoring policies.

In order to demonstrate the feasibility of HyperTap as a

framework that unifies RnS monitoring for virtualized en-

vironments, we describe the design and evaluation of three

practical lightweight auditors: Guest Operating System Hang

Detection (GOSHD), Hidden Rootkit Detection (HRKD),

and Privilege Escalation Detection (PED). The GOSHD and

HRKD auditors are chosen to show that a common event,

e.g., context switching, can be simultaneously used for both

reliability and security monitoring. The PED auditor is chosen

to show the advantages of active monitoring over passive

monitoring. In addition to facilitating the unification of RnS

monitors, HyperTap’s dependable hardware invariants and ac-

tive monitoring mechanism enable auditors with high detection

coverage. GOSHD can detect 99.8% of injected hang failures,

including partial hang failures in multiprocessor VMs – a new

failure mode revealed by GOSHD. HRKD can detect both

hidden processes and kernel threads regardless of their hiding

mechanisms. And PED can detect all four types of proposed

attacks that defeat Ninja [5], a real-world privilege escalation

detector that uses passive monitoring.

II. RELATED WORK

Previous research [6], [7], [8] has recognized the importance

of addressing RnS under a common framework. Frequently,

the approach has been to extend existing hardware [6], [7] with

support for RnS monitoring. While hardware implementations

have performance and accessibility advantages over software

in the context of fine-grained monitoring; their extensibility

and customizability after deployment can be quite limited. Hy-

perTap extends the concept of Virtual Machine Introspection

(VMI), which takes advantage of the hypervisor software layer

to provide monitoring support for the upper VM layer.

Traditional VMI techniques, such as VMWatcher [9] and

XenAccess [10], extract knowledge from the internal data

structures of the guest operating system (OS). That information

is then used to detect security attacks [9], [10], [11], [12],

[13]. However, that approach is vulnerable to attacks that can

manipulate the data structures used by VMI, as demonstrated

in [2], [14], [15]. Another limitation of traditional VMI is

that it only supports passive monitoring, i.e., monitoring that

performs system inspection in a polling manner. Passive

monitoring is not suitable for enforcing many security policies

[3]. Moreover, it is vulnerable to transient attacks [4], which

are attacks that occur between logging phases.

In order to address the limitations of passive monitoring,

event-driven, or active, monitoring has been proposed for out-

of-VM security enforcement [3], [16]. Lares [3], for example,

is an architecture that securely places hooks in protected VMs

and intercepts their events. However, this hook placement

mechanism is intrusive to the guest system. To reduce the

amount of manual intervention in the process, the authors of

[16] propose a method to automatically identify locations to

place useful application-aware hooks.

Previous studies [17], [18], [19], [20] show how hardware

architectural state can be used to interpret a guest OS’s oper-

ations. For example, Antfarm [17] and its extension Lycosid

[18] describe a guest user process counting technique based

on monitoring virtual memory (i.e., tracking CR3 in x86).

Ether [19] utilizes the VM Exit mechanism provided by HAV

to record traces of guest VM execution for offline malware

analysis. HyperTap builds on those concepts to provide robust

online monitoring for both reliability and security.

Out-of-VM failure detection has also been a subject of

study in previous research. The study in [21] uses supervised

machine learning on a set of hypervisor-level counters, such

as guest CPU usage and I/O count, to detect guest OS

failures. Such approaches can benefit greatly from HyperTap’s

common logging infrastructure and the counters it provides

(e.g., different types of events and states, which directly reflect

the operations of guest VMs).

III. HARDWARE-ASSISTED VIRTUALIZATION REVIEW

In order to support RnS monitoring, HyperTap takes ad-

vantage of features used by HAV, particularly the VM Exit

mechanism. This section reviews the basic concepts of HAV to

provide the context for the discussion in subsequent sections.

In 1974, Popek and Goldberg described the “trap-and-
emulate” model of virtualization [22]. “Trapping” prevents the

VM from taking privileged control, and “emulating” ensures

that the semantics of the control are done without violating

the VM’s expectations.

The trap-and-emulate can be done either (i) entirely in

software via binary translation and/or para-virtualization, or

(ii) using Hardware-Assisted Virtualization (e.g., Intel VT-x

and AMD-V). The latter design, HAV, supports an unmodified

guest OS with small performance overhead and significantly

simplifies the implementation of hypervisors. Although here

we focus on the x86 architecture and Intel’s VT-x, the tech-

niques could be mapped to AMD-V and PowerPC, since these

provide a similar mechanism that traps privileged instructions.

A. VM Exits

In addition to x86’s privilege rings, HAV defines guest mode

and host mode execution. Certain operations (e.g. privileged

instructions) are restricted in guest mode. If a guest attempts

to execute a restricted operation, the processor relinquishes

control to the hypervisor. If that happens, the processor fires a

VM Exit event and transitions from guest mode to host mode.

After the host has finished handling the exception, it resumes

guest execution via a VM Entry event.

Each type of restricted operation triggers a different type of

VM Exit event. For example, if the guest attempts to modify

the contents of a Control Register (CR), the processor fires a

CR_ACCESS VM Exit event. In addition to the event, control

fields and the state of the suspended VM are saved into a data

structure (VMCS in Intel VT-x and VMCB in AMD-V).

B. Extended Page Tables (EPT)

Extended Page Tables (EPT) is a hardware-supported mech-

anism for virtualizing the Memory Management Unit (MMU).

When EPT is enabled, each VM accesses its private memory

14141414

via a guest-physical address (GPA). The processor translates

GPAs to physical addresses by traversing the EPT paging
structures, which are transparent to the guest OS. Guest virtual
address (GVA) is the term for the virtual addresses used by

the guest system. EPT also allows specification of access

permissions for guest memory pages, namely ‘read,’ ‘write,’

and ‘execute.’ Guest attempts at unauthorized accesses cause

EPT_VIOLATION VM Exits.

C. Notation

Virtual CPU (vCPU): a VM’s virtual processor. With HAV,

each vCPU occupies one physical CPU core until the next VM

Exit event. At a VM Entry transition, the hypervisor assigns

an available physical CPU core to the suspended vCPU, unless

CPU affinity is used.

A.B: reference to field B of data structure A at the host layer,

e.g., vcpu.CR3: vcpu contains a field that stores the value of

the guest’s CR3 register.

C→D: reference to field D of data structure C at the guest
layer. In other words, C is a guest virtual address, e.g.,

TSS→RSP0 references the field RSP0 of the TSS structure

managed by the guest kernel.

IV. DESIGNING RELIABILITY AND SECURITY

MONITORING FOR VIRTUAL MACHINES

This section discusses the benefits of (i) having a unified

logging channel for all monitors, (ii) using active monitoring

instead of passive monitoring, and (iii) placing the root of trust

at hardware invariants for virtual machine monitoring.

A. Unified Logging

It is not uncommon for co-deployed logging mechanisms

to conflict. For instance, two monitors relying on a certain

counter that only allows exclusive access cannot uses it simul-

taneously. A concrete example would be to deploy both the

failure detection technique proposed in [23] and the malware

detection technique proposed in [24] in the same system, as

they both use hardware performance counters. In addition, one

monitor may become a source of noise for other monitors. For

example, intrusive logging could generate an excessive number

of events.

The problem can be solved by unifying logging for co-

located monitors. Unified logging is responsible for (i) re-

trieving common target system events and states, and then (ii)

streaming them in a timely manner to customizable auditors,

which enforce RnS policies.

Aside from avoiding potential conflicts, the combination

of logging phases yields additional benefits. It can reduce

the overall performance overhead of combined monitors. To

ensure the consistency of captured states and events, logging is

often a blocking operation. Once the event and state have been

logged, an audit can be performed in parallel with execution

of the target system. Therefore, combining blocking logging

phases boosts performance, even in cases where the captured

states differ. Furthermore, this approach inherits other benefits

of the well-known divide-and-conquer strategy: it allows one

to focus on hardening the core logging engine, and enables

incremental development and deployment of auditing policies.

B. Achieving Isolation via Architectural Invariants

An OS invariant is a property defined and enforced by

the design and implementation of a specific OS, so that the

software stack above it, e.g., user programs and device drivers,

can operate correctly. In the context of VMI, OS invariants

allow the internal state of a VM to be monitored from the

outside by decoding the VM’s memory [9], [10], [12], [11],

[13]. No user inside a VM can interfere with the execution

of outside monitoring tools. However, monitoring tools still

share input, e.g., a VMs’ memory, with the other software

inside VMs. Therefore, those monitoring tools are vulnerable

to attacks at the guest system level, as demonstrated in [2],

[14], [15].

An architectural invariant is a property defined and en-

forced by the hardware architecture, so that the entire software

stack, e.g., hypervisors, OSes, and user applications, can op-

erate correctly. For example, the x86 architecture requires that

the CR3 and TR registers always point to the running process’s

Page Directory Base Address (PDBA) and Task State Segment

(TSS), respectively. Hardware invariants and HAV features

have been studied in the context of security monitoring [17]

and offline malware analysis [19].

We find that architectural invariants, particularly the ones

defined by HAV, provide an outside view with desirable

features for VM RnS monitoring. The behaviors enforced

by HAV involve primitive building blocks of essential OS

operations, such as context switches, privilege level (or ring)

transfers, and interrupt delivery. Furthermore, strong isolation

between VMs and the physical hardware ensures the integrity

of architectural invariants against attacks inside VMs. Software

inside VMs cannot tamper with the hardware as it can with

the OS. In this study, we explore the full potential of HAV for

online enforcement of RnS policies.

However, relying solely on architectural invariants and ig-

noring OS invariants would widen the semantic gap separating

the target VM and the hypervisor. The reason is that many

OS concepts, such as user management (e.g., processes owned

by different users), are not defined at the architectural level.

In this study, we propose to use architectural invariants as
the root of trust when deriving OS state. For example, the

thread_info data structure in the Linux kernel containing

thread-level information can be derived from the TSS data

structure, a data structure defined by the x86 architecture.

In order to circumvent our OS state derivation, an attack

would need to change the layout of OS-defined data structures

(e.g., by adding fields to an existing structure that point

to tainted data). Changing data structure layout, as opposed

to changing values, is difficult for attackers, because (i) it

involves significant changes to the kernel code that references

the altered fields, and (ii) it would need to relocate all relevant

kernel data objects. Not only are those attacks difficult to

perform on-the-fly, but since malware always tries to minimize

15151515

Capture VM Exit =
Intercept OS ops

Obtain relevant HW
state

Derive relevant guest
OS state

In
sp

ec
ti

on

1

2

3

4

Context switch

Syscall

IO Access

Modify CR3
register

Set MSR register
Issue interrupts

Page fault
IO instructions

External interrupts

VM Exit Events

Auditor 1

Auditor 2

Auditor 3

(A) Guest OS
Operations

(B) Hardware
Operations

(C) Hardware
Virtualization
Enforcement

(D) VM Auditors

VM Exit Events
(root of trust)
CR_ACCESS EXT_INT ...

HW state (root of trust)

TR CR3 RSP

TSS Page Dir.

Guest OS state

task_structthread_info

VM Auditor (running outside VM)SHARED EVENT LOGGING RELIABILITY &
SECURITY
AUDITING

Fig. 1: HyperTap Monitoring Framework: (A) Guest OS operations that are subjects of the monitors; (B) Hardware operations

that are required to perform each guest OS operation; (C) VM Exit events that are generated before logged operations are

performed; (D) The captured events are delivered to auditors running outside the VM.

its footprint, our approach significantly impedes would-be

attackers.

C. Robust Active Monitoring

Passive monitoring is suitable for persistent failures and

attacks, because it assumes the corrupted or compromised

state remains in the system sufficiently longer than the polling

interval. That assumption does not hold in many RnS prob-

lems. For example, the majority of crash and hang failures

in Linux systems have short failure latencies (the time for

faults to manifest into failures) [25]. An unnecessarily long

detection latency, e.g., caused by polling monitoring, would

result in subsequent failure propagation or inefficient recovery

(e.g., multiple roll-backs).

As we demonstrate in Section VIII-C, a transient attack can

be combined with other techniques to create a stealthy attack

that can defeat passive monitoring.

Active monitoring, on the other hand, possesses many attrac-

tive features. Since it is event-driven, there is no time depen-

dence that can be exploited. Furthermore, active monitoring

can capture system activities in addition to the system state,

which passive monitoring provides. System activities are the

operations that transition a system from one state to another.

Invoking a system call is an example of a system activity. In

many cases, information about system activities is crucial to

enforcing RnS policies.

Active monitoring is not foolproof, as it can suffer from

event bypass attacks. If an attack can prevent or avoid gener-

ation of events that trigger logging, it can bypass the monitor.

To make active monitoring robust, we propose to use hardware

invariants, specifically the VM Exit feature provided by HAV,

to generate events. Section VI presents the hardware invariants

used to ensure the trustworthiness of generated events.

V. HYPERTAP FRAMEWORK AND IMPLEMENTATION

Following the principles presented in the previous section,

here we describe the design and implementation of HyperTap.

A. Scope and Assumptions

HyperTap integrates with existing hypervisors to safeguard

VMs against failures and attacks. It aims to make this pro-

tection transparent to VMs by utilizing existing hardware

KVM Hypervisor

�������	

����
�	�	

���
�	���������	����	

 Linux kernel

���
�	

���������	��
��

��
��

��
��

�

	

��

��

Auditing containers User VMs

Kernel module ������	����	�
������

�������	

����
�	 	

Non-blocking Blocking API call �!���"��	#����

��
��

�

Audit VM1

������
����

Audit VM2

$�%���	
������	
#���&��	
�$�#��

External
machine

Fig. 2: Implementation of HyperTap in the KVM hypervisor.

The hypervisor is modified to forward VM Exit events to

the Event Multiplexer (EM), which is implemented as a

separate kernel module. The EM forwards events to registered

auditors running as user processes inside auditing containers.

The Remote Health Checker (RHC) monitors the hypervisor’s

liveness.

features. Thus, HyperTap does not require modification of

either the existing hardware or the guest OS’s software stack.

HyperTap’s implementation assumes that the underlying

hardware and hypervisor are trusted. Although extra validation

and protection for the hardware and hypervisor could address

concerns about the robustness of different hypervisors against

failures and attacks, these issues are beyond the scope of this

work.

B. Monitoring Workflow

Fig. 1 depicts the overall workflow of HyperTap. The left

side of the figure illustrates how the shared event logging

mechanism works and the right side describes the auditing

phase. HyperTap utilizes HAV to intercept the desired guest

OS operations through VM Exit events generated by cor-

responding hardware operations. Since the HAV VM Exit

mechanism is not designed to intercept all desired operations,

e.g., system calls, Section VI presents algorithms to generate

VM Exit events for such operations.

HyperTap supports a wide range of events, from coarse-

grained events, such as process context switches, to finer-

grained events, such as system calls, and very fine grained

16161616

events, such as instruction execution and memory accesses.

That variable granularity ensures that HyperTap can be

adopted for a broad range of RnS policies.

HyperTap delivers captured events to registered auditors,

which implement specific RnS policies. An auditor starts by

registering for a set of events needed to enforce its policy.

Upon the arrival of each event, the auditor analyzes the state

information associated with the event. Auditors are associated

with VMs and each VM can have multiple auditors.

HyperTap also provides an interface that allows auditors to

control to target VMs. For example, the auditing phase is non-

blocking by default, but an auditor may pause its target VM

during analysis in order to stop the VM during an attack, or

roll-back the VM when it detects a non-recoverable failure.

C. Implementation

This subsection presents the integration of HyperTap with

KVM [26], hypervisor built with HAV as a Linux kernel mod-

ule. Fig. 2 depicts the deployment of HyperTap’s components.

HyperTap’s unified logging channel is implemented through

two components: an Event Forwarder (EF) and an Event
Multiplexer (EM). The EF is integrated into the KVM module,

and forwards VM Exit events and relevant guest hardware

state to the EM. By default, events are sent non-blocking to

minimize overhead. The EM, which is implemented as another

Linux kernel module in the host OS, buffers input events from

the EF and delivers them to the appropriate auditors.

The EM is also responsible for sampling VM Exit events

that are sent to a Remote Health Checker (RHC) running in a

separate machine. The RHC server acts as a heartbeat server

to measure the intervals between received events. If no events

are received after a certain amount of time, it raises an alert

about the liveness of the monitoring system.

Auditors are implemented as user processes inside auditing

containers1 running on the host OS. Compared to the dedicated

auditing VM used in previous work [12] [3], this approach

offers multiple benefits. First, it provides lightweight attack

and failure isolation among different VMs’ auditors, and

between auditors and the host OS. Second, it simplifies im-

plementation and reduces the performance overhead of event

delivery from the EM module. Finally, it allows the integration

of auditors into existing systems, since containers are robust

and compatible with most current Linux distributions.

We needed to add less than 100 lines of code to KVM to

implement the EF component and export Helper APIs.

VI. HARDWARE INVARIANTS FOR VM LOGGING

This section describes events that can be monitored via

hardware invariants and VM Exit events, the core mechanism

of HyperTap’s shared logging channel. Table I summarizes

guest systems’ internal operations, the hardware invariants,

and the types of VM Exit events associated with them. The

following sub-sections detail the use of these invariants.

1We use Linux containers (LXC) http://linuxcontainers.org/

A. Context Switch Interception

1) Process Switch Interception: Architectural Invariant.
Process switches can be observed by monitoring CR_ACCESS

VM Exit events. In x86, the CR3 register, or Page Direc-

tory Base Register (PDBR) contains the Page Directory Base

Address (PDBA) for the virtual address space of the running

process. As this base address is unique for each user process,

we can use it as a process identifier.

Process Counting Algorithm. We can count the number of

processes running on a guest VM by monitoring CR_ACCESS

events. This algorithm is independent of any data structure the

guest OS uses to manage its processes.

Fig. 3A shows the pseudo-code for the process counting

algorithm. The set of PDBAs (PDBA_set) is empty when the

guest OS boots up. At each CR_ACCESS event in which CR3

is modified (CR3 <- PDBA), the algorithm updates PDBA_set

with the value that will be written to CR3.

2) Thread Switch Interception: Monitoring of thread2

switches requires more effort than tracking CR_ACCESS events,

as threads can share the same virtual address space. In addi-

tion, a thread can reuse the virtual address space of another

process (e.g., Linux kernel threads).3

Architectural Invariant. In order to manage threads, the

x86 processor uses the Task Register (TR) and Task-State

Segment (TSS) structures. The TSS, stored in main memory,

holds the stack pointers of a task for different privilege levels,

and the TR points to the TSS structure of the current task. The

TSS is also used to support privilege protection. Each time

execution transfers from user level (3) to kernel level (0), the

kernel stack pointer is automatically loaded from the TSS by

the CPU (e.g., RSP <- TSS→RSP0). Since all kernel threads

share the same virtual address range, each has a separate

address range for its stack. Therefore, the kernel stack pointer

(RSP0) stored in the TSS can be used as a thread identifier.

Thread Switch Interception Algorithm. Each thread

switch modifies the TSS stored in memory. Therefore, we can

track thread switches by setting memory access permissions.

Specifically, on a guest system with EPT, a write to an EPT

write-protected address triggers an EPT_VIOLATION VM Exit.

We use this mechanism to track the kernel stack pointer.

Fig. 3B shows the pseudo-code for this algorithm. After

the guest OS finishes setting up its data structures (e.g., the

CR3 register gets written for the first time), the algorithm

sets all pages that contain TSS structures (one per vCPU) as

write-protected. Each time a TSS structure is modified, the

hypervisor gets notified by an EPT_VIOLATION event.

B. System Call Interception

System calls allow user mode processes to invoke kernel

mode functions. At the hardware level, a system call transfers

the CPU from user to kernel mode. That transfer from a lower

2A thread is equivalent to a task in the x86 architecture.
3kthreads reuse the virtual address space of the previously sched-

uled process. All processes in Linux have the same kernel address
range. Windows does not have standalone kernel threads.

17171717

TABLE I: Summary of guest internal events and related VM Exit types

Monitoring Category Guest event Related VM Exit Architectural Invariant

Context switch interception (§VI-A)

Process context switch (§VI-A1) CR_ACCESS The CR3 register always points to the PDBA of the running process
Writes to CR registers cause CR_ACCESS VM Exits

Thread switch (§VI-A2) EPT_VIOLATION The TR register always points to the TSS structure of the running process
TSS.RSP0 is unique for each thread

Interrupt-based system call (§VI-B1) EXCEPTION Software interrupts cause EXCEPTION VM Exits

Fast system call (§VI-B2) WRMSR, SYSENTER’s target instruction is stored in an MSR registerSystem call interception (§VI-B)
EPT_VIOLATION Write to MSR registers causes WRMSR VM Exit

I/O access interception (§VI-C)

Programmed I/O IO_INST Execution of I/O instructions (e.g., IN, INS, OUT, OUTS)
Memory mapped I/O EPT_VIOLATION Access to memory mapped I/O areas, which are set as protected
Hardware interrupt EXTERNAL_INT Hardware interrupt delivery causes EXTERNAL_INT VM Exits
I/O APIC access APIC_ACCESS I/O Advance Programmable Interrupt Controller (APIC) events

Memory access EPT_VIOLATION Accesses to memory regions with proper permissions cause EPT_VIOLATION VM ExitsLow-level interception (§VI-D)
Instruction execution EPT_VIOLATION Execution of instructions from non-executable regions causes EPT_VIOLATION VM Exits

to higher privilege is strictly checked by the processor: it

must be done through pre-defined gates. This section describes

techniques to intercept two types of system calls: interrupt-
based system calls and fast system calls.

1) Interrupt-based System Calls: The legacy method for

issuing a system call in x86 is to raise a software interrupt.

For example, Linux uses INT $0x80 and Windows uses

INT $0x2E to issue system calls. The interrupt handler routine

is the common gate for all system calls, and parameters of

system calls are passed through general-purpose registers.

Architectural Invariant. In a VM, each software interrupt

triggers an EXCEPTION VM Exit.4

Interrupt-based System Call Interception Algorithm. We

developed an algorithm that intercepts interrupt-based system

calls, shown in Fig. 3D. If the type and number of the

interrupt indicate a system call, the algorithm records all the

registers that could carry the system call’s parameters and then

generates a notification regarding the system call.

2) Fast System Calls: A fast system call mechanism was

added to x86 with the SYSENTER/SYSEXIT instruction pair

for Intel processors and the SYSCALL/SYSRET instructions for

AMD processors.

Architectural Invariant. The SYSENTER instruction takes

input from Model Specific Registers (MSRs) and general-

purpose registers. For example, SYSENTER’s target instruction

address is stored in the IA32_SYSENTER_EIP MSR. An MSR

can only be modified via a WRMSR instruction, a privileged

instruction that causes WRMSR VM Exits.

Fast system call interception algorithm. Fig. 3E contains

pseudo-code for fast system call interception. The algorithm

uses WRMSR events to identify the address of the system call

entry point in the guest VM. The address is set to execute-

protect so that a guest’s attempt to execute the system call

entry point will generate an EPT_VIOLATION VM Exit.

C. I/O Access Interception

A primary function of the hypervisor is to multiplex I/O

devices for its VMs, except when a VM is given exclusive

access via an I/O pass-through mode. HAV provides several

VM Exits that the hypervisor can use to capture IO accesses

from guest VMs. We categorize I/O accesses into three types:

4Intel VT-x allows selection of which interrupts cause EXCEPTION VM
Exits via an EXCEPTION_BITMAP.

Programmed I/O (PIO) is performed through I/O in-

structions, such as IN and OUT. These instructions trigger

IO_ACCESS events when executed in guest mode.

Memory Mapped I/O (MMIO) is performed through

instructions that manipulate memory (e.g., MOV, AND, OR). In

order to trap MMIO, the hypervisor sets memory protection

for the allocated MMIO area so that accesses to this area will

trigger EPT_VIOLATION events.

I/O interrupts are interrupts raised by physical devices to

notify guest VM about I/O-related events (e.g., an incoming

network packet). The presence of a pending interrupt causes

either an EXTERNAL_INT or APIC_ACCESS VM Exit event.

Because of the diversity of I/O devices, details for each

type of device are not covered, and it is up to implementers

to choose an appropriate mechanism.

D. Fine-grained Interception

The EPT feature presented in Section III-B makes it possible

to track a guest’s execution at the single instruction and mem-

ory access level by setting appropriate access permissions.

However, that fine-grained interception incurs a significant

performance cost. To minimize its impact, an auditor should

make use of that feature only for selective critical protection.

VII. EXAMPLES OF AUDITORS

We expand on the techniques presented in the previous

section to demonstrate how to build auditors using HyperTap.

We present two examples that showcase how RnS monitoring

can be combined (GOSHD and HRKD) and one example that

demonstrates the effectiveness of active monitoring (PED).

A. Guest OS Hang Detection

1) Failure Model: We consider an OS as being in a hang

state if it ceases to schedule tasks. This failure model is similar

to the one introduced in [23]. In multiprocessor systems, it is

possible for the OS to experience a hang on a proper subset of

available CPUs. If that happens, we say that OS is in a partial
hang state, as opposed to a full hang state, in which the OS

is hung on all CPUs.

An example of a software bug that causes hangs in the OS

kernel is a missing unlock (i.e., release) of a spinlock in an exit

path of a kernel critical section. All threads that try to acquire

this lock after the buggy exit path has been executed end up in

a hung state. If the hung kernel thread is in a non-preemptible

code section (e.g., either the kernel itself is non-preemptible,

18181818

At VM Start:
 PDBA_set = {}
 Monitor CR_ACCESS events

At each CR_ACCESS event (CR3 <- PDBA):
 if (PDBA not in PDBA_set)
 PDBA_set += PDBA

Count the Virtual Address Spaces:
 // save current PDBA
 Saved_CR3 = vcpu.CR3
 // Remove invalid PDBA
 for_each PDBA in PDBA_set {
 // Step 1: Change Page Directory
 vcpu.CR3 = PDBA
 // Step 2: Test Page Directory
 gpa = gva_to_gpa(known_gva)
 if (gpa == UNMAPPED_GVA)
 remove(PDBA_set, PDBA)
 }
 // restore the PDBA
 vcpu.CR3 = Save_CR3
 return size_of(PDBA_set)

At VM Start:
 Monitor CR_ACCESS events

On the first CR_ACCESS event (write to CR3):
 for_each vcpu[i]
 Set write-protect for vcpu[i].TR
 Monitor EPT_VIOLATION events

At each EPT_VIOLATION event on vcpu ([Addr] <- V):
 if (Addr == &vcpu.TR->RSP0) // vcpu.TR = TSS
 // V = Kernel_stack_base
 Forward_switch_evt(V)

At VM Start:
 Monitor WRMSR events

On the WRMSR event (IA32_SYSENTER_EIP <- addr):
 syscall_entry = addr;
 Each VCPU: Set execute-protected for
 the page containing syscall_entry
 Monitor EPT_VIOLATION events

At each EPT_VIOLATION event on vcpu (execute [Addr]):
 if (Addr == syscall_entry) {
 invoked_syscall = read_register(EAX);
 para1 = read_register(EBX);
 ...
 Forward_syscall(invoked_syscall, para1, ...);
 }

At VM Start:
 Monitor EXCEPTION events

At each EXCEPTION event (ex_type, int_num):
if ((ex_type == SOFTWARE_INT) &&
 (int_num == 0x80) || (int_num == 0x2e)) {
 invoked_syscall = read_register(EAX);
 para1 = read_register(EBX);
 ...
 Forward_syscall(invoked_syscall, para1, ...);
}

On the first CR_ACCESS event (write to CR3):
 for_each vcpu[i]
 saved_TR[i] = vcpu[i].TR;

Integrity checking (e.g., on every VM Exit):
for_each vcpu[i]
 if (save_TR[i] != vcpu[i].TR)
 // TSS has been relocated
 raise_alert();

E

A CB

D

Fig. 3: Pseudo-code for each algorithm. (A): Process Counting Algorithm, (B): Thread switch interception, (C): TSS integrity

checking, (D): Interrupt-based system call interception, (E): Fast system call interception

or the thread has purposely disabled preemption), the kernel

hangs on the CPU that is executing the hung thread. The hung

thread may also be holding other locks, which can cascade

into hanging of more threads. In a multiprocessor system a

partial hang usually results in a full hang. The kernel stays in

a partial hang state until the hang propagates to all available

CPUs. However, if the kernel has no other lock dependencies

with the hung threads, it can stay in the partial hang state until

it gets shut down or rebooted.

Distinguishing between OS partial and full hang is im-

portant for two reasons. (i) Previous OS hang detection ap-

proaches use external probes, e.g., heartbeats, to detect OS

hangs. In a multiprocessor system, mechanisms to generate

heartbeats may not be affected by a partial hang, and would

continue to report error-free conditions. (ii) Detecting partial

hangs results in a shorter detection latency, as all full hangs

are preceded by a partial hang. The Guest OS hang detection

(GOSHD) module discussed in this section detects both partial

and full OS hangs.

2) GOSHD Mechanism: GOSHD uses the thread dispatch-

ing mechanism discussed in Section VI-A2 to monitor the

VM’s OS scheduler. The EPT_VIOLATION and CR_ACCESS

mechanisms in HAV guarantee that GOSHD can capture all

context switch events. If a vCPU does not generate any switch-

ing events for a predefined threshold time, GOSHD declares

that the guest OS is hung on that vCPU. Because the vCPUs

are monitored independently of each other, GOSHD can detect

both partial hangs and full hangs. From GOSHD’s perspective,

guest tasks are scheduled independently on each vCPU. Since

GOSHD monitors the absence of context switching events

to detect hangs, it is important to properly determine the

threshold after which it is safe to conclude that the OS is

hung on a vCPU. If this threshold is shorter than the time

between two consecutive context switches, GOSHD generates

false alarms. In order to be safe and fairly conservative, we

profiled the guest OS to determine the maximum scheduling

time slice, and set the threshold to be twice the profiled time.

The numbers are usually on the order of milliseconds, or

at most seconds, and are quicker compared to other hang

detection techniques, such as heartbeat, or timer watchdogs,

which frequently have detection times on the order of tens of

seconds or minutes.

B. Hidden Rootkit Detection (HRKD)

1) Threat Model: Rootkits are malicious computer pro-

grams created to hide other programs from system administra-

tors and security monitoring tools. For example, users cannot

see a hidden process or thread via common administrative

tools, such as Task Manager, PS, or TOP. Autonomic security

scanning tools can also be bypassed simply because their

inspection lists do not contain the hidden programs.

There are many existing techniques to hide a process,

such as Direct Kernel Object Manipulation (DKOM) [27],

physical memory manipulation [28], and dynamic kernel code

manipulation [15]. For example, using those techniques, a

rootkit can stealthily detach the data objects belonging to

the malicious programs from their usual lists (e.g., remove a

task_struct object from Linux’s task_list). Therefore,

a normal list traversal cannot reveal the detached object. As

exemplified by previous studies [2], [15], [14], well-crafted

rootkits can escape the detection of guest OS invariant-based

scanning tools.

2) Detection Technique: Our HRKD module employs the

context switch monitoring (Section VI-A) methods to inspect

every process/thread that uses the vCPU, regardless of how

kernel objects are manipulated. Each time a process or a thread

is scheduled to use CPUs, it is intercepted by the module for

further inspection. This interception defeats hidden malware;

it puts malicious programs back on the inspection list.

In order to detect a hidden user process or thread, the

process counting algorithm (Fig. 3A) or thread switch inter-
ception algorithm (Fig. 3B) can be used. These algorithms are

independent of the method by which the guest OS manages

process-related data structures, because they rely only on

19191919

architectural invariants. Inspection starts from the CR3 or TR

registers. Therefore, the observed number of processes always

reflects the exact number of running processes. This is a trusted

view that can be cross-validated against other views, e.g., a

view from existing VMI tools or views from in-guest utilities,

which may be the target of rootkits. Discrepancies between

these views reveal the presence of hidden user processes and

threads.

3) How Can a Rootkit Hide from HRKD?: A rootkit can

hide from our HRKD by suppressing CR3 access (for user-

level rootkits) or RSP0 access (for kernel-level rootkits) VM

Exits. It can do so by reusing the CR3 (virtual address space)
or RSP0 (kernel stack) of an existing process or kernel thread.

Such attacks are called code injection attacks, which are not

actually rootkits. Nevertheless, our HRKD is not designed to

detect this class of attack.

C. Privilege Escalation Detection (PED)

Ninja [5] is a real-world privilege escalation detection

system that uses passive monitoring. Ninja is included in the

mainline repository for major Linux distributions, including

Debian variants like Ubuntu. Ninja periodically scans the

process list to identify if a root process has a parent process

that is not from an authorized user (i.e., not defined in

Ninja’s “magic” group). If so, the root process is flagged as

privilege-escalated. Ninja optionally terminates such processes

to prevent further damage to the system. In order to avoid

mistakenly killing setuid/setgid processes, Ninja allows users

to create a “white list” of legitimate executables that are not

subjected to its checking rules. The interval between checks

is configurable (1s by default).

We implement HT-Ninja, which utilizes HyperTap for de-

tecting privilege escalation attacks. We reuse the OS-level

Ninja’s checking rules when looking for unauthorized pro-

cesses and make the following changes:

Transform passive monitoring to active monitoring. We

define the following events at which a process is checked: (i)

first context switch of each process; and (ii) every I/O-related
system call (e.g., open, read, write, and lseek). That ensures

that we check before any unauthorized actions, e.g., file or

network, are conducted.

Using architectural invariants. The original Ninja uses

Linux’s /proc filesystem to obtain information about running

processes. HT-Ninja uses only hardware state, such as the

TR and CR3 registers, to identify current running processes.

HT-Ninja derives OS-specific information, such as User ID

(uid) and Effective User ID (euid), from the TSS structure

and RSP register, which can be combined to obtain the exact

thread_info and task_struct objects of each process.

D. Other Uses of HyperTap

The logging capabilities presented in Section VI can also

be used to implement a wide variety of RnS monitors. For

example, there is a class of security tools that depend on

system call interception [29], [30], [31]. Failure detection

based on machine learning, e.g. [21], can be applied to the

events and states logged by HyperTap.
HyperTap could also be incorporated into the runtime mem-

ory safety technique proposed in [32]. That technique consists

of two steps: (i) compiler analysis and instrumentation, to

guide (ii) runtime memory safety checking. The latter step

requires OS modification to intercept privileged operations,

e.g., MMIO, MMU configuration, and context switching [33].

Since HyperTap supports those interceptions without altering

the guest OS, it shows promise for being integrated with

runtime checking. Such incorporation would allow a variety of

RnS detectors to be implemented, such as detectors for silent

data corruption, buffer overflow, and code injection. We leave

that integration for future work.

VIII. FUNCTIONALITY EVALUATION

A. Guest OS Hang Detection
1) Experimental Setup: The experiments were conducted

on a guest VM with two vCPUs and 1024MiB of RAM. For

the guest OS, we used the default build of SUSE Enterprise

Linux Server 11 SP1, with and without kernel preemption

enabled. The profiled maximum scheduling timeslice in both

cases was two seconds, and hence the hang detection threshold

was set to four seconds.
2) Experimental Methodology: In order to assess the hang

detection capabilities of GOSHD, we used the fault injection

framework proposed in [34]. As indicated in [34], one of the

common causes of system hangs is improper implementation

and invocation of locking mechanisms (e.g., spinlocks, read-

er/writer locks) that protect access to shared data structures

in the kernel. Based on those findings, the authors of [34]

identified four causes of hang failures: missing spinlock re-

leases, wrong spinlock orderings, missing unlock/lock pairs,

and missing interrupt state restorations. We further extended

that concept to inject transient and persistent faults. A transient

fault is only activated once when the fault location is first

executed. Conversely, a persistent fault is activated every time

the fault location is executed. Fault injection was repeated with

different types of workloads running on the guest system:

• Hanoi Tower: “Tower of Hanoi” recursive program.

• make -j1: serial compilation of libxml.

• make -j2: compilation of libxml with two tasks in

parallel.

• HTTP server: serving of an HTTP load from

ApacheBench, which ran on a separate machine.

The first step of a fault injection experiment is to identify

the injection location(s). We chose to inject faults into core

functions of the Linux kernel and into frequently used kernel

modules, such as ext3, char, and block. By profiling the kernel

using the above workloads, we identified 374 locations on the

execution path of the kernel to inject faults.
For each fault location, we started from a clean VM and

then injected a fault while running the workload. There were

five possible outcomes from each injection:

• Not Manifested: The fault was injected, but no observ-

able failure was detected.

20202020

��� ���� ���� ���� ���� �����

�� !���!"�#�
$�%��&'��
$�%��&'��

�����(�#)�#�
�)�#����

�� !���!"�#�
$�%��&'��
$�%��&'��

�����(�#)�#�
�)�#����

�� !���!"�#�
$�%��&'��
$�%��&'��

�����(�#)�#�
�)�#����

�� !���!"�#�
$�%��&'��
$�%��&'��

�����(�#)�#�
�)�#����

	
!�
%�

�*
�

+#
��
$
,!

 �

�

�*
�

+#
��
$
+,

!
�

	
!�
%�

�*
�

+#
��
$
,!

 �

�

�*
�

+#
��
$
+,

!
�

�#
�
(��

 -
��
�.
*-�

��
#(
�(-
�
-��

�.
*-�

�
�
��
������������	�� �
�
��
���������	�� 	����
�
��
�� 	�����	��
��
��

Fig. 4: Guest OS Hang Detection coverage

���

����

����

����

����

�����

�� �� ��� ��� �	��

��
�	
��

��
��
	

	�
	�
��

�
�	

������	
	�
��
��	����	
���	

��
���������������������
��
���������������������

Fig. 5: Guest OS Hang Detection latency. The blue line (with

triangle markers) reflects the latency of detecting the first hang

of a two vCPU VM. The red dashed line (with circle markers)

reflects the latency of partial hangs.

• Not Detected: A fault was injected, the VM was non-

responsive but GOSHD did not report a vCPU hang.

• Not Activated: A fault was injected, but the workload

did not execute the code that contained the fault.

• Partial Hang: At least one vCPU was still operational

after 10 minutes (roughly twice the longest failure-free

execution of the workloads) from the time a hang was

detected on another vCPU.

• Full Hang: All vCPUs hung within 10 minutes after hang

was detected on the first vCPU.

3) Detection Coverage Results: Fig. 4 summarizes the

detection coverage and percentages of partial and full hangs

detected by GOSHD. About 82% of injected faults manifested

as hangs. Overall, GOSHD missed 24 failures across all exper-

iments, which resulted in 14,720 failures (17,952 injections ×
0.82 manifested faults) or a hang detection coverage of 99.8%.

Further analysis of the misclassified failures indicates that

the failures were caused by a fault location that was repeatedly

activated by the guest SSH server, which was used by our

external probe to check for false alarms by GOSHD. As a

result, although the SSH probe reported hangs, the kernel and

other processes on the VM still executed normally.

On average, 18% to 26% of faults caused partial hangs

on the non-preemptible and preemptible kernels, respectively.

Those significant numbers emphasize the importance of partial

hang detection. In many partial hang cases, the VM was

still accessible from outside (e.g., via SSH connections). That

demonstrates the ineffectiveness of hang detection methods

such as heartbeats, as the process/thread responsible for gener-

ating a heartbeat can still be fully operational and will continue

to report that the system is as well.

Transient faults caused slightly more partial hangs than per-

manent faults did in single-task workloads (Hanoi Tower and

make -j1), but significantly more partial hangs in concurrent

multi-tasking workloads (make -j2 and HTTP server), because

persistent faults can be reactivated and cause more independent

hanging threads.

Kernel preemption does not appear to help prevent a hang

due to spinlocks, as most critical sections in the kernel are non-

preemptible. However, preemption does reduce the number of

full hangs. For example, consider two tasks T1 and T2 sharing

a user-level lock lu. While holding lu, task T1 hangs because

of our injection into a kernel spinlock. Task T1 cannot be

preempted because it is executing in a non-preemptible critical

section (causing a partial hang). Now let us assume that task

T2 attempts to acquire lu. In the non-preemptible kernel, task

T2 will hang as well, thus causing a full hang. But in the

preemptible kernel, task T2 can be preempted, and therefore

the kernel remains in a partial hang.
4) Detection Latency Results: Detection latency measures

how quickly a detector can identify a problem. GOSHD

raises an alarm when it finds that the guest OS scheduler

has not scheduled processes for a predefined time. Therefore,

GOSHD’s minimal detection latency is that threshold (four

seconds in our experiments). Specifically, detection latency

represents the time between fault activation and the moment

GOSHD raises an alarm. Note that the guest OS is not

necessarily hung at the moment the fault is injected. Fig. 5

shows the detection latency of GOSHD for the same set of

experiments described previously. Fig. 5 demonstrates how

partial hang detection helps reduce full hang detection latency.

The blue line (triangles) shows that GOSHD can detect more

than 90% of hangs after four seconds and all hangs within

32 seconds. Meanwhile, the red line (circles) shows that only

54% of hangs result in a full hang after four seconds. Many

full hangs can be detected tens of seconds ahead through the

use of partial hang detection.

B. Hidden Rootkit Detection

1) HRKD Coverage: We tested HRKD on a variety of

OSes and HRKD detected the presence of malware against all

tested real-world rootkits.5 On Windows, the tested rootkits

included FU, HideProc, AFX, HideToolz, HE4Hook, and

BH. HRKD’s process counting technique showed additional

processes beyond those reported by the Task Manager. On

Linux, HRKD was able to discover all tested kernel-level

rootkits: Ivyl’s, Enyelkm 1.2, SucKIT, and PhalanX. Table II

summarizes the results.

Since HRKD’s process counting technique relies only on

architectural invariants, it worked properly for all tested OSes,

5We modified some rootkits’ source code so they could work properly on our tested
OS versions.

21212121

�������	��

���

�
���
������������� �����

�
���
�������������������

�
�

�
�

������

�����

������

��������

�
�����

Fig. 6: Top: Transient attack, the attacker attacks when a

passive monitor is not logging. Bottom: Spamming attack, the

attacker causes an attack to go undetected by creating extra

work for both the logger and auditor.

namely Windows XP, Vista, 7, and Server 2008, and various

distributions of Linux kernel 2.6, without any adjustment. In

addition, the detection capability of that technique was not

affected by the implementation or strategy used by rootkits.

In fact, the rootkits we evaluated employed a variety of hiding

techniques, ranging from DKOM to system call hijacking (see

Table II). Thus, HRKD will be able to detect future hidden

rootkits, even if they use novel hiding mechanisms.

C. The Three Ninjas

1) Illustrating Attacks on Ninja: Here, we intend to use

Ninja only to demonstrate the limitations of passive monitor-

ing, and are not criticizing its checking rules. We evaluated two

passive-monitoring versions of Ninja: an original in-OS ver-

sion (O-Ninja) and our modified version (H-Ninja), which was

implemented at the hypervisor-level using traditional VMI.
Later on, we will compare those two implementations against

our active monitoring HT-Ninja. But first, we demonstrate four

attacks that can bypass passive monitoring mechanisms:

Transient attacks: We used two real privilege escalation

exploits, namely a glibc vulnerability (CVE-2010-3847) [35]

and a kernel out-of-bounds error (CVE-2013-1763) [36] to

obtain a terminal with root privileges. Ninja can easily detect

the privilege escalated terminal if it remains in the system.

However, when we terminated a process right after it finished

an operation (e.g., copying sensitive data), both Ninja versions

were unaware of the existence of the terminal, as its lifetime

was short. See the top of Fig. 6 for an illustration.

Side channel attacks: We exploited the Linux /proc file

system as a side channel [37] to determine Ninja’s monitoring

interval and when each check would be performed. Specif-

ically, the file /proc/PID/stat allowed us to determine

the current state of a process (e.g., Sleep or Running) and the

current instruction pointer (EIP). By observing Ninja’s process

TABLE II: Real-world rootkits evaluated with HRKD (All

were detected).

Rootkit Target OS Hiding Technique(s)
FU Win XP, Vista DKOM
HideProc Win XP, Vista DKOM
AFX Win XP, Vista Hijack system calls
HideToolz Win XP, Vista, 7 Hijack system calls
HE4Hook Win XP Hijack system calls
BH-Rookit-NT Win XP, Vista Hijack system calls
Ivyl’s Rootkit Linux >2.6.29 Hijack system calls
Enyelkm 1.2 Linux 2.6 kmem, Hijack system calls
SucKIT Linux 2.6 kmem, DKOM
PhalanX Linux 2.6 kmem, DKOM

TABLE III: Predicting Ninja’s monitoring interval (seconds)

Ninja’s Interval Predicted Mean Min Max SD

1 1.00039 1.00006 1.00367 0.00071
2 2.00023 1.99998 2.00164 0.00038
4 4.00025 3.99986 4.00189 0.00040
8 8.00025 7.99951 8.00126 0.00035

state, we could accurately measure the monitoring inteval, i.e.,

how long Ninja was in the Sleep state and when the next check

would be performed. With the measured interval and checking

time, we could launch transient attacks that avoided detection.

However, that particular strategy did not work on H-Ninja, as

it does not generate a /proc file in the target VM. Table III

shows result of a trial of this method, in which each interval

was sampled 30 times.

Rootkit combined attacks: In a more substantial attack,

we combined a privilege escalation exploit with a rootkit,

which was able to hide processes. After the terminal was

escalated, we immediately ran the rootkit to prevent Ninja

from discovering the presence of the terminal, bypassing both

versions of Ninja.

Spamming attacks: We increased the execution time of the

function that iterated over the process list by launching a

large number of valid processes together with one privilege

escalated process. The purpose was to increase the scanning

time so that the escalated process can complete before the scan

reached it. Note that a blocking H-Ninja is protected against

this attack. See the bottom of Fig. 6 for an illustration.

2) Active Monitoring with HT-Ninja: To show the benefits

of HyperTap’s active monitoring mechanism, we compared the

detectability of the three versions of Ninja (O-Ninja, H-Ninja,

and HT-Ninja) against real exploits, coupled with the attack

strategies described in Section VIII-C1. It is worth mentioning

that both O-Ninja and H-Ninja are vulnerable to DKOM

rootkits, e.g., SucKIT, because they only use OS invariants.

Our experiments showed that O-Ninja with a 0-second

checking interval was quickly defeated by a privilege esca-

lation exploit CVE-2013-1763 [36] combined with spamming

and a rootkit.6 The attack was performed as follows: (i) a

number of idle processes were created; (ii) the exploit code

was run to grant root privileges to the current process; and

(iii) with root privileges, the rootkit was installed to remove

the escalated process from the process list. We repeated the

attack 300 times and have timed the attack to take ∼4ms on

an Intel(R) Core(TM)2 Duo CPU E8400 3GHz CPU. Without

creating extra processes on a system with 31 processes run-

ning, O-Ninja can detect ∼10% attacks. When we introduced

100 idle processes, the detection probability was reduced to

single-digit percentages (between 2 and 3%). With 200 or

more idle processes, O-Ninja cannot detect any attacks (with

the exception of outliers � 1%).

To test H-Ninja, we used the same privilege escalation +

rootkit combination as with O-Ninja. Since the attack was

6https://github.com/ivyl/rootkit

22222222

/0� 10� 2/0� 210� 3/0�

����������2/34�	
�5����3///
�
�����������2/34�	
�5����3///
�
������6���2/34�	
�5����3///
�

����������317�	
�5����1//
�
�����������317�	
�5����1//
�
������6���317�	
�5����1//
�

����������4/87�	
�5����9///
�
�����������4/87�	
�5����9///
�
������6���4/87�	
�5����9///
�

�������:��;�����<�5�6��=�
�������:��;�����<����=�

�������:��;�����<��6��=�
�������:��;�����<��6��=�
���6����������6
���
��

��>�5���;3=��6�88��������������5�
���
�5�6����5����6����6�����6��

����5�6���3�
5��������5���� ����	��5�
�������:����5��;�����<��6
	��=�

!�5���������" �������
#�������6
���
��

!�����!�����5�;2��6��
�����=�
!�����!�����5�;9��6��
�����=�

!�����!�����5�;27��6��
�����=�
#����	�5����6���$��!���������

#�6��55�����:6��
%$�������6
���
��

��&�?���'��(�?)"!���)"!��� ���'��(�� ��&��

�6���$��5���������
����5�5���������
����6	�������*5�

�#+������5� ��
�6�*�6��5�

��5*�,"������5� ��
�6�*�6��5�

Fig. 7: Measured performance overhead of HyperTap sample

monitors. The workloads are run with three different configu-

rations: 1) Both HRKD and HT-Ninja, 2) only HT-Ninja, and

3) only HRKD. Error bars indicate one standard deviation.

quick, a small value for the checking interval was needed.

With an interval of 4 ms, H-Ninja could detect 100% of the

attacks, and the detection dropped to near 60% at 8 ms. With

an interval > 20 ms, the detection probability became < 5%.

Although an attacker with no access to side channels must

rely on a certain amount of luck to defeat O-Ninja and H-

Ninja, his/her probability of success can be increased by

spamming (O-Ninja) or by reasoning that administrators would

not wish to incur the penalty of scanning the process tree with

a frequency in the single-digit milliseconds. Also, the speed of

the attack at 4 ms was extremely naı̈ve; a more sophisticated

attacker should be able to do better.

Since it uses active monitoring, HT-Ninja was able to detect

all attacks in all tested scenarios.

A main limitation of HT-Ninja, as well as O-Ninja and H-

Ninja, is that they do not detect privilege escalation attacks that

occur within the context of “white listed” processes. Those

processes, many of which are setuid programs, are ignored

by Ninja. An attacks that compromises (e.g., using buffer

overflow) and executes malicious code within the context of

a white listed process would not be detected.

IX. PERFORMANCE EVALUATION

We conducted experiments to measured the performance

overhead of individual HyperTap auditors as well as the

combined overhead of running multiple auditors. We measured

the runtime of the UnixBench7 performance benchmark when

(i) each auditor was enabled, and (ii) all three auditors are

enabled. The target VM was a SUSE 11 Linux VM with 2

vCPUs and 1GiB of RAM. The host computer ran SUSE

11 Linux and the KVM hypervisor, with an 8 core Intel i5

3.07GHz processor and 8 GiB of RAM. The results were

illustrated in Fig. 7. The baseline is the execution time

when running the workloads in the VM without HyperTap

integrated, and the reported numbers are the average of five

runs of the workloads.

In most cases, the performance overhead of running all three

auditors simultaneously was (i) only slightly higher than that

of running the slowest auditor, HT-Ninja, individually, and

(ii) substantially lower than the summation of the individual

overheads of all auditors. That result demonstrates the benefits

of HyperTap’s unified logging mechanism.

For the Disk I/O and CPU intensive workloads, all three

auditors together produced less than 5% and 2% performance

losses, respectively. The Disk I/O intensive workloads appear

to have incurred more overhead than CPU intensive workloads

because they generated more VM Exit events, at which point

some monitoring code was triggered.

For the context switching and system call micro-

benchmarks, all three auditors together induced about 10% (or

less) and 19% performance losses, respectively. It is important

to note that those micro-benchmarks were designed to measure

the performance of individual specific operations without

any useful processing; they do not necessarily represent the

performance overhead of general applications. The relatively

high overhead was caused by the HyperTap routines enabled

for logging those benchmarked operations. Since only HT-

Ninja needs to log system calls, it was the primary source

of the overhead in the system call micro-benchmark case.

X. CONCLUSIONS

This paper presents principles for unifying RnS monitoring.

We identify the boundary dividing the logging and auditing

phases in monitoring processes. That boundary allows us

to unify and develop dependable logging mechanisms. We

demonstrate the need for an isolated root of trust and ac-

tive monitoring to support a wide variety of RnS monitors.

We applied those principles when developing HyperTap, a

framework that provides unified logging, based on hardware

invariants, to safeguard VM environments. The feasibility of

the framework was demonstrated through the implementation

and evaluation of three monitors: Guest OS Hang Detection,

Hidden RootKit Detection, and Privilege Escalation Detection.

In all cases, the use of architectural invariants was central to

the high quality and performance observed in the experiments.

We presented additional analysis of the method so that other

reliability and security monitors can be built on top of the

HyperTap framework.

7http://code.google.com/p/byte-unixbench/

23232323

XI. ACKNOWLEDGMENTS

This material is based upon work supported in part by

the National Science Foundation under Grant No. CNS 10-

18503 CISE, by the Army Research Office under Award

No. W911NF-13-1-0086, by the National Security Agency

(NSA) under Award No. H98230-14-C-0141, by the Air Force

Research Laboratory and the Air Force Office of Scientific

Research under agreement No. FA8750-11-2-0084, by an IBM

faculty award, and by Infosys Corporation. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author and do not necessarily

reflect the views of the National Science Foundation, or other

organizations.

REFERENCES

[1] M. Bishop, “A model of security monitoring,” in Fifth Annual Computer
Security Applications Conference. IEEE, 1989, pp. 46–52.

[2] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee,
and D. Xu, “DKSM: Subverting virtual machine introspection for fun
and profit,” in 29th IEEE Symposium onReliable Distributed Systems,
2010, pp. 82–91.

[3] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture
for secure active monitoring using virtualization,” in Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008, pp. 233–
247.

[4] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, “Vigilare:
Toward snoop-based kernel integrity monitor,” in In Proc. of the 2012
ACM Conference on Computer and Communications Security, ser. CCS
’12. New York, NY, USA: ACM, 2012, pp. 28–37.

[5] T. R. Flo, “Ninja: Privilege escalation detec-
tion system for gnu/linux,” Ubuntu Manual,
http://manpages.ubuntu.com/manpages/lucid/man8/ninja.8.html, 2005.

[6] R. G. Ragel and S. Parameswaran, “IMPRES: Integrated monitoring for
processor reliability and security,” in In Proc. of the 43rd Annual Design
Automation Conference, ser. DAC ’06. New York, NY, USA: ACM,
2006, pp. 502–505.

[7] N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu, “An architectural
framework for providing reliability and security support,” in Dependable
Systems and Networks, 2004 International Conference on. IEEE, 2004,
pp. 585–594.

[8] K. Pattabiraman, “Automated derivation of application-aware error
and attack detectors,” Ph.D. dissertation, Champaign, IL, USA, 2009,
aAI3363053.

[9] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection and monitor-
ing through VMM-based out-of-the-box semantic view reconstruction,”
vol. 13, no. 2. New York, NY, USA: ACM, Mar. 2010, pp. 12:1–12:28.

[10] B. D. Payne, M. de Carbone, and W. Lee, “Secure and flexible moni-
toring of virtual machines,” in Twenty-Third Annual Computer Security
Applications Conference (ACSAC). IEEE, 2007, pp. 385–397.

[11] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in In Proc. Network and Distributed
Systems Security Symposium, 2003, pp. 191–206.

[12] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” in Secu-
rity and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp.
297–312.

[13] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel, “Ensuring
operating system kernel integrity with osck,” in In Proc. of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVI. New York,
NY, USA: ACM, 2011, pp. 279–290.

[14] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits: Bypass-
ing kernel code integrity protection mechanisms,” in In Proc. of the 18th
USENIX Security Symposium, 2009, pp. 383–398.

[15] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Defeating dynamic data
kernel rootkit attacks via vmm-based guest-transparent monitoring,”
in International Conference on Availability, Reliability and Security
(ARES). IEEE, 2009, pp. 74–81.

[16] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, “Tappan zee (north)
bridge: mining memory accesses for introspection,” in In Proc. of the
2013 ACM SIGSAC conference on Computer & communications
security, ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 839–
850.

[17] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Antfarm:
Tracking processes in a virtual machine environment,” in In Proc. of the
USENIX Annual Technical Conference, 2006, pp. 1–14.

[18] ——, “Vmm-based hidden process detection and identification using
lycosid,” in In Proc. of the Fourth ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’08. New
York, NY, USA: ACM, 2008, pp. 91–100.

[19] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in In Proc. of the 15th ACM
Conference on Computer and Communications Security, ser. CCS ’08.
New York, NY, USA: ACM, 2008, pp. 51–62.

[20] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “Spectre: A dependable
introspection framework via system management mode,” in In Proc. of
The 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’13), June 2013.

[21] D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower, and T. Adeshiyan,
“Vigilant–out-of-band detection of failures in virtual machines,” Oper-
ating systems review, vol. 42, no. 1, p. 26, 2008.

[22] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” pp. 121–, 1973.

[23] L. Wang, Z. Kalbarczyk, W. Gu, and R. K. Iyer, “An os-level framework
for providing application-aware reliability,” in Dependable Computing,
2006. PRDC’06. 12th Pacific Rim International Symposium on. IEEE,
2006, pp. 55–62.

[24] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” SIGARCH Comput. Archit. News, vol. 41,
no. 3, pp. 559–570, Jun. 2013.

[25] K. S. Yim, Z. T. Kalbarczyk, and R. K. Iyer, “Quantitative analysis of
long-latency failures in system software,” in Dependable Computing,
2009. PRDC’09. 15th IEEE Pacific Rim International Symposium on.
IEEE, 2009, pp. 23–30.

[26] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in In Proc. of the Linux Symposium,
vol. 1, 2007, pp. 225–230.

[27] J. Butler and G. Hoglund, “Vice–catch the hookers,” Black Hat USA,
vol. 61, 2004.

[28] D. Sd, “Linux on-the-fly kernel patching without lkm,” Phrack Magazine
#58, Article 7, http://www.phrack.org/issues.html?id=7&issue=58, 2001.

[29] T. Garfinkel, “Traps and pitfalls: Practical problems in system call
interposition based security tools,” in In Proc. of the Network and
Distributed Systems Security Symposium, vol. 33, 2003.

[30] N. Provos, “Improving host security with system call policies,” in
In Proc. of the 12th USENIX Security Symposium, vol. 1, no. 8.
Washington, DC, 2003, p. 10.

[31] A. P. Kosoresow and S. Hofmeyer, “Intrusion detection via system call
traces,” Software, IEEE, vol. 14, no. 5, pp. 35–42, 1997.

[32] J. Criswell, N. Geoffray, and V. S. Adve, “Memory safety for low-level
software/hardware interactions.” in USENIX Security Symposium, 2009,
pp. 83–100.

[33] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure virtual
architecture: A safe execution environment for commodity operating
systems,” in In Proc. of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, ser. SOSP ’07. New York, NY, USA:
ACM, 2007, pp. 351–366.

[34] D. Cotroneo, R. Natella, and S. Russo, “Assessment and improvement
of hang detection in the linux operating system,” in Reliable Dis-
tributed Systems, 2009. SRDS’09. 28th IEEE International Symposium
on. IEEE, 2009, pp. 288–294.

[35] T. Ormandy, “The gnu c library dynamic linker expands $origin in se-
tuid library search path,” http://seclists.org/fulldisclosure/2010/Oct/257,
2010, [Online; accessed 29-April-2013].

[36] SecurityFocus, “Linux kernel cve-2013-1763 local privilege escalation
vulnerability,” http://www.securityfocus.com/bid/58137/info, 2013, [On-
line; accessed 29-April-2013].

[37] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in Security and Privacy (SP), 2012 IEEE Symposium on,
2012, pp. 143–157.

24242424

