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ABSTRACT

This paper presents a Factor Graph based framework called
AttackTagger for highly accurate and preemptive detection
of attacks, i.e., before the system misuse. We use secu-
rity logs on real incidents that occurred over a six-year pe-
riod at the National Center for Supercomputing Applica-
tions (NCSA) to evaluate AttackTagger. Our data consist
of security incidents that led to compromise of the target
system, i.e., the attacks in the incidents were only identified
after the fact by security analysts. AttackTagger detected
74 percent of attacks, and the majority them were detected
before the system misuse. Finally, AttackTagger uncovered
six hidden attacks that were not detected by intrusion de-
tection systems during the incidents or by security analysts
in post-incident forensic analysis.

1. INTRODUCTION

Cyber-systems are enticing attack targets, since they host
mission-critical services and valuable data. Cyber-attacks
are often tied to leaked credentials. Millions of credentials
can be bought on black markets at low cost [20]. Using
stolen credentials, attackers impersonate as legitimate users,
effectively bypassing traditional defenses, e.g., network fire-
walls. Such attacks are often discovered only in their final
stages when attack payloads are delivered, e.g., authentica-
tion services are contaminated to harvest more credentials or
computing infrastructure are utilized to build botnets [18].

Detecting such cyber-attacks in their early stages presents
several challenges. Attackers leave no discernible trace, as
they infiltrate a target system as legitimate users using stolen
credentials. Only a partial knowledge of the attacks is avail-
able at the early stages. As a user has just logged in at the
beginning of a user session, only a few attributes of the user
profile are available for examination, e.g., user role or phys-
ical location of the user login. The user activities remain to
be seen on the target system. Examining an individual user
activity is not a sufficient basis for drawing an accurate con-
clusion about the user’s intention. Logging in from a remote
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location can indicate either a legitimate user is logging in
from outside of the regular infrastructure, or an illegitimate
user is logging in using stolen credentials. A framework is
considered to reason about the user’s activities collectively.

We propose the AttackTagger framework, which is built
upon Factor Graph, a type of probabilistic graphical model
consisting of random variables and factor functions [§]. A
random variable quantifies an observed user behavior or a
hidden state (e.g., the user intention: benign, suspicious,
or malicious). Relationships among variables are defined
by discrete factor functions. A factor function imply(A, B)
means B is often followed by A. For example, in the context
of masquerade attacks, an attacker impersonates a legiti-
mate user, e.g., by logging into the target system from the
attacker’s computer using stolen credentials. In that case,
the factor function means When a user logs in from an un-
registered computer (A), the user is likely to be suspicious
(B). Each factor does not necessarily capture entire user
behaviors leading to an attack: rather, a factor only cap-
tures a part of the attack and can influence other factors.
For example, When a user is suspicious (B) and the user
is downloading an executable file from an unknown remote
server (C), then the user is likely to be malicious (D).

While traditional signature-based detection methods iden-
tify a specific signature of an attack, our AttackTagger frame-
work uses factor functions to reason about stages of an at-
tack collectively. The factor function imply(B,C,D) can use
the existing result of the previous factor imply(A,B) to de-
termine that a user is malicious. An entire sequence of hid-
den user states is jointly inferred as a whole, based on ob-
served user behaviors and defined factors. This design allows
AttackTagger to detect attacks relatively early and uncover
the attacks that were undetected by security analysts.

As a case study, our experiment uses incident data of 116
security incidents over a six-year period (2008-2013) at the
National Center for Supercomputing Applications (NCSA).
Each incident includes data from a number of sources: an
incident report in free text format, raw logs (e.g., network
flows, syslogs, and security alerts), and user profiles (e.g., a
user role or user’s registered physical location). Using Fac-
tor Graph as a framework allows AttackTagger to integrate
user behaviors from a variety of data sources. As a result,
AttackTagger can identify most malicious users relatively
early (from minutes to hours before the system is misused).
All the NCSA incidents used in this study were in reality
detected after the fact, i.e., after the attacker misused the
system. In addition, AttackTagger identified hidden mali-
cious users that were missed by NCSA security analysts.



The main contributions are:

e A novel application of Factor Graphs that integrates
user behaviors from a heterogeneous data sources for
preemptive intrusion detection, i.e., before the system
misuse.

e Design, implementation, and experimental evaluation
on a variety of security incidents collected over a six-
year period (2008-2013).

e Detection of six hidden malicious users that were missed
by security analysts.

2. A CREDENTIAL-STEALING INCIDENT

In this section, we describe a credential-stealing incident
that occurred at NCSA and analyze the challenges of de-
tecting such an incident promptly.

A credential-stealing incident (2008). In May 2008,
a sophisticated credential-stealing incident occurred at NCSA.
Using a compromised user account credential (e.g., a pair of
a username and a password), attackers logged into a gate-
way node at NCSA and injected credential-collecting code
into the secure shell daemon (SSHd) ' of the node. NCSA
computing infrastructures were shared among hundreds of
users, and many of them logged in to NCSA using the com-
promised gateway node. Thus, the attackers were able to
collect new credentials of subsequent user logins.

An excerpt from the raw logs of the incident is listed in
Table 1. First, the attackers used the compromised creden-
tial to log into the gateway node from a remote host, i.e.,
a host located outside of NCSA’s computing infrastructure
in the event €®. Second, the attackers downloaded a source
code file (vm.c) with a sensitive extension (.c) in the event
e'. A sensitive extension indicates either a source code file
(e.g., .c, .sh) or an executable file (e.g., .exe). A sophisti-
cated attacker can change the file extension to a harmless
one (e.g., .jpg). But our netflow monitor can identify a mis-
match between a file extension and its content by analyzing
the file header (e.g., a Windows executable file always be-
gins with the MZP string because of its Portable Executable
file format specification). The attackers then compiled, and
escalated privilege to the root by exploiting a kernel bug
(CVE-2008-0600) on the compromised node . Those actions
were not captured by the monitoring systems at runtime;
they were only revealed in the forensic analysis process af-
ter the incident. Thus, they were not shown in the raw logs.
To harvest credentials of users logging into the compromised
node, after the attackers escalated to root, the attackers in-
jected credential-collecting code into the original SSHd, forc-
ing it to restart (which resulted in the SIGHUP signal in the
event e?). Each raw log entry was automatically mapped to
an event identifier using regular expression scripts.

In this incident, the attackers were identified after the
fact by security analysts. The collateral effect of the incident
was: leaking credentials of subsequent users who logged into
the compromised node and potential usage of the leaked
credentials for subsequent attacks.

Characteristics of multi-staged attacks. The dis-
cussed incident is an example of a multi-staged attack, in
which an attack i) spans an extended amount of time, and ii)
involves several steps, such as stealing or brute-force guess-
ing of credentials, remote login, download and execution of

La widely deployed authentication service of UNIX systems.

Raw log Event

sshd: Accepted <user> from <remote> e’: remote login

HTTP GET vm.c (<bad-domain>.com) e': download sensitive
sshd: Received SIGHUP; restarting. e?: restart sys service

Table 1: Example raw logs and events of an incident

privilege escalation exploits, installation of backdoors, and
periods of dormancy. On the other hand, single-staged at-
tacks (which typically are remote exploits, such as SQL in-
jection or exploitation of VNC servers) are usually accom-
plished in a single execution step in a short amount of time
(in terms of minutes) to launch the attack payload (e.g.,
reading hashed passwords from a database).

Challenges of detecting multi-staged attacks. De-
tecting a multi-staged attack requires identification of the
states of the involved users throughout the attack. A user
state can be benign (when a legitimate user logs in from the
remote location as a part of his/her normal activity), sus-
picious (when an illegitimate user uses stolen credentials to
log in from the remote location), or malicious (when a user
violates a security policy). Each observed user event can be
tagged with a user state.

In the above example, the single remote login event pro-
vides insufficient information to tag the corresponding user
state as malicious. By itself, that event does not indicate a
security violation, although other single events could do so,
such as modification of a system service by someone who is
not a system administrator. Based solely on this event, it
is more reasonable to tag its state as either benign or sus-
picious. In order to be more conclusive about how to tag
the event, we need further information. For example, the
existing context of the system, the user profile, and we need
information from subsequent events. Therefore, the usual
approach of using per-event classifiers is not effective in de-
tecting multi-staged attacks.

To detect single-staged attacks, existing IDSes often em-
ploy per-event classifiers, which use rules or signatures to
identify malicious users. In our example, given the event
e? (restart system service in Table 1), a possible tag s =
benign could mean that the event corresponds to a mainte-
nance activity of a benign user, e.g., the user is upgrading
the SSHd to a newer version. The tag s> = benign is plausi-
ble, because an upgrade of the SSHd often requires restarting
of the current SSHd in order to load the updated binaries.

However, per-event classifiers consider each event individ-
ually and do not take advantage of knowledge of an event
sequence. For example, when it is known that the previous
observed event was tagged as suspicious, the current event
e? can be tagged differently in light of this knowledge. In
such a case, a more likely tag s? = malicious could indicate
that the event e® corresponds to an unauthorized activity
of an already suspicious user, who is attempting to inject
malicious code into the SSHd, thus forcing it to restart. A
framework is needed to reason on the user events collectively.

3. PROBABILISTIC GRAPHICAL MODELS

In this section, we provide an overview of Probabilistic
graphical models (PGMs), graph-based representations of
dependencies among random variables, in modeling security
incidents. PGMs such as Bayesian Networks (BNs), Markov
Random Fields (MRFs), and Factor Graphs (FGs) can com-
pactly represent complex joint distributions of random vari-
ables over a high-dimensional space [8]. While BNs and
MRFs have been successfully employed in a variety of do-
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Figure 1: Illustrations of use of Bayesian Network, Markov Random Field, and Factor Graph to model security incidents.

mains, such as medical condition diagnosis or entity extrac-
tion from text [12, 10], the use of FGs in security domains
has not been explored. We found that FG is more suitable
than the others for modeling security incidents, since FG
can subsume both BN and MRF [8].

When PGMs are used to model security incidents, the ran-
dom variables consist of observed user events (derived from
incident reports and raw logs) and hidden user states associ-
ated with the events. Specifically, in the credential-stealing
incident example (Table 1), we consider the sequence of
the observed events E = {e' = download sensitive, €* =
restart system service}, and the sequence of the corre-
sponding user states is S = {s', s>}. Based on the observed
user events, PGMs are defined to capture the dependencies
among the random variables. We compare the use of BN,
MRF, and FG to model the example incident as follows.

Bayesian Networks. A BN is a type of probabilistic
graphical model that uses a directed acyclic graphs G =
(V, E) to represent causal dependencies among random vari-
ables. Each vertex v € V corresponds to a random variable;
each directed edge e € E represents a causal relation be-
tween two variables, e.g., X — Y means X causes Y.

A simple Bayesian Network (SBN) models the dependen-
cies of the observed events E and the user states S in Figure
1-al. This model assumes that the observed events E are
independent and that event-state dependencies are causal
relations: an event e’ depends only on its user state variable
st (s* = €', and s> — €?). Because of the independent
assumption, the SBN cannot capture the dependencies of a
sequence of events and the corresponding sequence of user
states. An example of such dependencies is, an event e’ that
is not only caused by its corresponding user state s, but also
caused by a previous user state s~ .

In Figure 1-a2, a Naive Bayesian Network (NBN) models
the dependencies of all the observed events E and a single
user state s. NBN assumes an event is independent of others.
Thus, the causal dependencies are simplified: each event
e’ depends only on the single user state variable s (e.g.,
s > e s — 62). NBN is not suitable for early detection
of attacks, since it operates on a complete sequence of the
observed events E to infer the user state. To detect attacks
in real-time, a detection system should determine the user
state after the arrival of each new observed event (i.e., based
on an incomplete set of the observed events).

In Figure 1-a3, a more complex BN (CBN) models the se-
quential dependencies among a group of random variables.
Consider the user states s',s? and the observed event e?;
to model dependencies among the three variables, the CBN
must make an assumption of the pairwise causal dependen-
cies among the random variables (s' — e?,s* — 5% 5% —
e?). The disadvantages of this CBN are as follows. Although
CBN is relatively simple in this example incident, the num-
ber of pairwise dependencies among a group of variables in
a CBN can grow quickly as the number of variables in the
group increases. When a group involves n variables, a CBN
may have to define up to n(n—1)/2 pairwise dependencies in
the group, making the CBN much more complex. Moreover,
in some domains (e.g., natural language processing), a causal
relation between a pair of variables cannot be claimed; only
a non-causal relation can be assumed. That non-causal rela-
tion is discussed in more detail in the part-of-speech tagging
example in the MRFs sub-section.

The discussed BN models allow explicit representation of
causal dependencies among variables, however, they become
more complex as the number of variables grows.

Markov Random Fields. A MRF is a type of proba-
bilistic graphical model that uses an undirected graph G =
(V, E) to represent relations among random variables. Each
vertex v € V corresponds to a random variable; each edge
e € E represents a relation between two variables.

The simple Markov Random Field (SMRF) depicted in
Figure 1-b1l is equivalent to the simple Bayesian Network
(SBN) in Figure 1-al. In the SMRF, the dependency be-
tween e' and s' is represented by a function ¢(e', s*). The
function ¢(e', s*) is defined as a conditional probability func-
tion p(e'|sh).

Characteristics of an MRF are as follows. Let n(v) be
the set of v’s neighbors, i.e., the vertices that are directly
connected to v by a single edge. Variables in a MRF are
grouped into cliques, in which all variables within each clique
must be pairwise connected. A clique is a maximal clique if
it cannot be extended by addition of an adjacent variable.

A complex joint probability function (pdf) of variables
in an MRF can be factorized into a product of simpler lo-
cal functions, defined on the set of maximal cliques in the
MRF. Each local function corresponds to a clique and de-
scribes relations of its variables. The factorization simplifies
representation and computation of MRF's.



MRFs are used in domains where variable relations are
non-causal, e.g., it is natural to indicate that X correlates
with Y, rather than say X causes Y [10]. For example, in
part of speech (POS) tagging, a word (an observed variable)
is often tagged with a part of speech (a hidden variable),
e.g., noun or verb, based on the word itself and its con-
text. Depending on the context (my research or I research),
the word research can be correlated with different parts of
speech. In this example, the relation between the observed
word (research) and its part of speech is non-causal.

When the variable dependencies are simple, e.g., depen-
dencies among a group of two or three variables, an MRF
can be used as an alternative to a BN. Figure 1-bl and
Figure 1-b2 depict an MRF model’s equivalent to the BN
models in Figures 1-al,a2, where the directed edges in the
BNs have been replaced with the undirected edges. An MRF
does not make any assumptions on the causal relation among
the variables. An arbitrary function can be used to define
the relation among the variables.

In our example, an event (an observed variable) and a user
state (a hidden variable) can have a non-causal relation. For
example, when a user logs in remotely, it is usually that the
user is traveling (i.e., the user state is benign), not because
an attacker is impersonating the user with a stolen user cre-
dential (i.e., the user state is malicious).

An MRF model (Figure 1-b3) illustrates non-causal de-
pendencies among the events and the user states. Consider
a group of variables s!,s% €%, they can have the follow-
ing cliques: the two-variable cliques e?, s® (represented by
a dotted line), and the three-variable clique €2, st s%. In the
cliques, one can define either the local functions of an event
and the corresponding user state (e.g., ¢(e2, s2)), or the lo-
cal functions of an event, the corresponding user state, and
the previous user state (e.g., ¢(ez, s1,52)).

In the example MRF, the function of a clique simplifies
the representation of the MRF compared to the equivalent
representation in a BN. For example, the clique ez, s1, s2 in
the MRF (Figure 1-b3) simply uses one local function to de-
scribe the relation among the three variables in the clique,
instead of using three local functions (i.e., conditional prob-
ability distribution function) to describe the three pair-wise
causal dependencies in the equivalent BN model (Figure 1-
a3). Despite the simpler representation in MRF's, a practi-
tioner can still model complex dependencies by factorizing
a local function into a product of smaller functions, e.g.,
the ¢(e2,s1,s2) can be factorized into the three functions
representing the pairwise causal dependencies between the
variables in the clique.

The advantages and disadvantages of using MRF's are as
follows. In MRFs, the use of one local function per clique
avoids the need to make explicit assumptions about causal
dependencies among variables, as necessary in BNs. How-
ever, there is an overlap between the three-variable clique
st 5%, €% and the two-variable clique s?,e? that cannot be
naturally expressed using MRFs, because a MRF is built
upon maximal cliques.

The above analysis suggests a common representation of
both BNs and MRFs, which is Factor Graphs.

Factor Graphs. A Factor Graph is a type of proba-
bilistic graphical model that can describe complex depen-
dencies among random variables using an undirected graph
representation, specifically a bipartite graph. The bipartite
graph representation consists of variable nodes represent-

ing random variables, factor nodes representing local func-
tions (or factor functions), and edges connecting the two
types of nodes. Variable dependencies in a Factor Graph
are expressed using a global function, which is factored into
a product of local functions.

Suppose a global function g(z,y, z) of the three variables
z,y,z can be factored as a product of the local functions
f17 f27 f3 as fOHOWS: g(x7 Y, Z) = f1 (m)f2($, y)f3(y7 Z) In
this example, the variable nodes are x,y, z; the factor nodes
are fi, f2, f3; and the edges are shown in Figure 1-d.

Factor Graphs are simpler and more expressive than BNs
and MRFs. In a Factor Graph, factor functions explic-
itly identify functional relations among variables, includ-
ing causal relations (BNs) and non-causal relations (MRFs).
Moreover, complex dependencies in BNs and MRF's can be
subsumed using Factor Graphs [8]. A factor function can
be used to represent multiple causal relations or non-causal
relations. The use of factor functions can simplify a complex
BN or a complex MRF by reducing the number of functional
relations that have to be defined. Equivalent FG represen-
tations of BNs and MRFs are shown in Figures 1-{c1, ¢2-1,
¢2-2, ¢3-1, and ¢3-2}. A detailed discussion of conversions
among FGs, BNs, and MRF's can be found in [8]. FGs has
led to development of effective inference algorithms (e.g.,
Gibbs sampling or belief propagation) [16, 8]. Since FGs of-
fer the same representation for both BNs and MRFs, those
algorithms can be used for existing BNs and MRFs when
they are converted to FGs.

In our security domain, Factor Graphs are more flexible
to define different types of relations among the events to the
user state compared to BNs and MRFs. Specifically, FGs
can integrate sequential relation among events and external
knowledge (e.g., expert knowledge or knowledge of a user
profile) to their models.

4. FRAMEWORK OVERVIEW

In this section, we provide an overview of using Factor
Graphs in our framework to model the example incident
described Section 2. We briefly overview steps of our frame-
work in Figure 2.

Step 1: Extract user events. User events can be
extracted automatically from raw logs (using regular ex-
pression scripts) or manually from incident reports. In the
example incident, the sequence of observed events was F
= {e" = login remotely, ¢! = download sensitive, e* =
restart system service}. The event sequence is associated
with a sequence of hidden user states S = {s°,s', s?}.

Step 2: Define factor functions. A factor function de-
fines the relations among variables. Each factor function is a
discrete function that takes random variables, e.g., observed
user events or hidden user states as the input, and outputs
a discrete value indicating relations among the inputs.

For example, a Type-1 factor function f(e,s) can be de-

‘ Extract events from raw logs (automatically)

’ Extract user events or from incident reports (manually)

’ Define factor functi ‘ Define functional relations among variables
efine rac zr unctions (e.g., events, user states) using factor functions

Construct per-user factor graph based on user

’ Construct per-user factor graph ‘ events and factor functions

Perform inference on per-user factor graphs to
’ Infer hidden user states ‘ determine the most probable values of the
* sequence of user states

‘ Conclude the user as malicious when the user

’ Identify malicious users state at the time of examination is malicious

Figure 2: Process of modeling using Factor Graphs.



fined to imply the relation: if e happens then s. Suppose
we have the relation: if a user downloads a file with a sen-
sitive extension, then the user is suspicious. Here we have
two variables: one event e=download sensitive and a state
s = suspicious. The function f(e, s) returns 1 if e=download
sensitive and s = suspicious; it returns 0 otherwise. For ex-
ample, the function f; in Figure 1-f is defined as follows.
1 if s' = suspicious
& e' = download sensitive

0 otherwise

Similarly, a factor function can capture the case when a
system administrator restarts an SSHd, which is likely a
maintenance activity. The function f2 in the Figure 1-f is
defined as follow.

1 if s' = benign

fa(et, st) = & e' = restart sys service
0 otherwise

The function f2 returns 1 when the user event is restarting
a system service (i.e., SSHd in our example) and the user
state is benign. It returns 0 otherwise.

To identify a user state based on the context of an event,
a more complex function can involve more variables, e.g.,
the previous user state or the previous event. A Type-2 fac-
tor function f(e’,e'™* s* s'!) defines the relation among
a user state s’, its previous user state s'~!, and observed
events e 7!, e!. For example, the function f3 in Figure 1-f is
defined as follows.

f1(€t7st) =

1 if s = suspicious

& s' = malicious

& et = restart SsYys service
0 otherwise

The function f3 returns 1 when an already suspicious user
restarts a system service and the current user state is ma-
licious. Given the event restart system service, it identifies
the current user state in the context that the previous user
state is suspicious. It returns 0 otherwise.

In this illustration, we consider only two types of factors:
Type-1 factors and Type-2 factors. More factor functions
can be manually defined to capture user state in the context
of events and user profiles, and to integrate expert knowledge
into Factor Graphs. A more formal definition and discussion
of Type-1 and Type-2 factors are provided in Section 5.

Step 3: Construct per-user Factor Graphs. Given
a sequence of user events E and a defined set of factor func-
tions F', a Factor Graph is automatically constructed for the
user, namely per-user factor graph. Each factor connect its
corresponding user events and user states.

Figure 1-f illustrates the evolution of a per-user Factor
Graph as new events are observed. When only one event is
observed, the Factor Graph contains only two Type-1 fac-
tors (f1, f2) for the event ¢® and its corresponding state s°.
When two events are observed, the two Type-1 factors are
used to connect the new event e' and its corresponding state
s'. In addition, the Factor Graph has a Type-2 factor (f3)
connecting both the events and their states: e°,s°, e',s'.
As more events are observed, the same set of defined factors
(f1, f2, f3) is used to connect the new events.

Step 4: Infer hidden user states. Given a per-user
Factor Graph (Figure 1-f), a possible sequence of user states
S is automatically evaluated through a summation of the
weighted factor functions F', score(S|E) = >, pwyf(cy),
where w;y is the weight of the factor function f, and c; is the
set of inputs to the factor function f. The sequence of user

f3(et7et_175t7st_1) =

states that has the highest score represents the most proba-
ble sequence corresponding to the event sequence observed
until that point.

A naive approach is to iterate over possible values of the
user states in the constructed Factor Graph and select the
sequence of values that results in a highest score. The most
probable sequence of values is S={benign, suspicious, mali-
cious}, as shown in Figure 1-f. In our model, we compute the
probabilities of the user state sequences using more efficient
methods (Section 5).

Step 5: Conclude that users are malicious. The
compromised user is automatically identified when the user
state at a time of observation is malicious.

Most steps in our framework are automated, except Step-2
(defining of factor functions), which requires expert knowl-
edge. Using our framework, security analysts can quickly
examine user states to identify the transition of a user from
benign to suspicious and malicious, without having to manu-
ally examine a large amount of raw logs. As a result, security
analysts have more time to respond to security incidents or
to increase additional monitoring of suspicious users to un-
cover potentially unauthorized activities.

S. ATTACKTAGGER MODEL

In this section, we provide a generic formulation of the
Factor Graph model for incident modeling and detection.

Preliminaries. Consider a user u of a target system.
The user is characterized by a user profile U, which is a
vector of user attributes. Examples of the user attributes
are shown in Table 3. U does not change during usage of
the target system. In order to capture the user activities in
the target system, monitors are deployed at various system
and network levels to collect raw logs. At runtime, each log
entry is automatically converted to a discrete event e.

An event e’ indicates an important activity in the target
system (e.g., restart of a system service), or an alert on a
suspicious activity (e.g., download of a file with a sensitive
extension). The set of events & (Table 3) is system-specific
and is predefined based on: the capabilities of the moni-
toring tools (e.g., IDS alerts) and expert knowledge of the
target system.

A user session is a sequence of user events E* = {e!...e"}
from the time when user started using the target system
until the observation time ¢.

A user state s' € § = {benign, suspicious, malicious} is a
hidden variable whose value determines the suspiciousness
of the user. The initial user state is determined based on the
user profile. A user is benign when no security event (e.g., a
policy-violation event or an alert) has been observed for the
user and the user profile is clean of suspicions. For example,
the initial user state is benign if the user has just logged
in and the user account has not been compromised in the
past. As the user proceeds, each user state s® is associated
with the arriving event e’ of the user. A user is suspicious
when more than one security events has been observed for
the user; however, further information is needed to make a
conclusion. A user is malicious when the user is determined
to violate a security policy or there is enough information
to conclude that the user has malicious intentions. More
fine-grained user states can be defined.

The notation and the meaning of the variables of an attack
in the model are given in Table 2.

Characterization of factor functions. A factor func-



Figure 3: A snapshot of the Factor Graph model of an attack
at a time t.

tion can capture i) the relation between a user state and
an event, ii) the relation among a user state and the earlier
events/states observed during the progression of the inci-
dent, and iii) the relation between a user state and a user
profile. Defining such factor functions can assert a user state
with a higher degree of confidence. Factor functions can be
categorized into the three main types of relations: Type-1
(event-state), Type-2 (state-state), and Type-3 (user-state).

Type-1. A factor node fi(e,s) captures the relation be-
tween the event e and the hidden state variables s.

Type-2. A factor node fi(e'™' e’,s""! s') captures the
relation among the hidden states s'~', s', events e'~!, and
el.

Type-3. A factor node fi (U, e, s'™1) captures the
relation among a user profile U, an event e'~!, and a hidden
state s'71.

A factor function has a discrete value output of 0 or 1.
Each factor f(z) is defined by an indicator function Ia(x) :
X — {0, 1} that returns 1 if an input « € X is a match with
A and 0 otherwise, where A is a tuple of values and z is a
tuple of variables. A match between z and A (i.e., z = A)
means that the values of variables in = are the same as those
of A, element-wise.

1 ifz=A

La(w) = { 0 otherwise

For example, in Section 3, we defined a factor function fs
for capturing the user state associated with the event restart
system service, given that the previous observed event was
labeled as suspicious. The factor function belongs to the
Type-2 category and can be defined using indicator func-
tion as follows. Let A be a tuple of (e/™! = e*, ¢'= restart
system service, s'~! = suspicious, s' = malicious). The
notation e* for the event e!~! means that the event e'~* can
be any of the events in the event set €. Using our defini-
tion, the factor function is defined as fi(e!™! et,s'™1,s') =
Ta(ef™1, et 871, s"). We illustrate real factor functions, de-
rived from our real-world incidents dataset, in Section 6.

Higher-order and complex factor functions relating mul-
tiple events can be defined, however, they construct more
complex Factor Graphs.

A generic Factor Graph. Figure 3 shows a generic
Factor Graph model of an attack. Variable nodes correspond
to either observed variables U, E* or hidden variables (S*).
Factor nodes represent factor functions describing functional
relations among the observed variables and hidden variables.

For the purpose of illustration, Figure 3 shows a part of the

Symbol | Description

e, &, FE Event, event set, sequence of events
w, U User, user profile

fF Factor function, set of factor functions
Suy, S User state, user state set

Table 2: Notations of variables used in our model.

complete Factor Graph at the time ¢. Five factor functions
are illustrated: fi=1, f (Type-1), f! (Type-2), and fi=*, f¢
(Type-3). In our model, the factor functions are defined for
the sequence of events E' from e! (when a user begins using
the system) to e’ (at an observation time t).

Inference of hidden user states. To identify malicious
users, AttackTagger infers the most probable values of the
user state in the sequence S* using the constructed factor
graph. Specifically, if the user state s' = suspicious, then
the user is allowed to operate in the target system under
close monitoring (e.g., logging network traffic of the user or
logging user commands); if the user state s* = malicious,
the user is identified as an attacker and actions are taken to
disconnect the user from the target system (e.g., terminating
the user’s active network connections or disabling the user
account). Our inference is based on the joint probability
distribution on the Factor Graph.

Joint probability distribution function (pdf). Let F =
{Fe., Fs, F\,} be the set of factor functions of Type-1, Type-
2, and Type-3, respectively. Let f(cy) be a factor function
f € F where cy is the set of its inputs that can be ob-
served and hidden state variables. The joint probability dis-
tribution P(U, E*, S*) of the observed variables and hidden
state variables can be factorized using factor functions F:
P(U,E*,S") = £ [I;er f(er). In the joint pdf, we use Z as
the normalization factor to make sure that the joint pdf is a
proper distribution, instead of computing the score of S* as
seen in Section 4. The normalization factor Z can be com-
puted by summing values of f over all possible combinations
of the variables {U, E*, S'}.

Inference. The most probable values of the user states in
the sequence S* can be inferred by enumerating all possible
values of the user states in the sequence and returning the
values that maximize P(U, E*, S*).

Sz?nfe'rv‘ed = arg maxl H f(cf)
st 2
fer

Although the brute-force approach can give an exact re-
sult for the most probable hidden state variables S?, its naive
enumeration of all possible values of the user states in the
sequence is costly. Since each state variable s® has a dis-
crete value, approximation methods such as Gibbs sampling,
which have been successfully utilized in computer vision and
natural language processing, can be used for inference [16].

Gibbs sampling on Factor Graphs. Given a constructed
Factor Graph of a user session, the user state sequence can
be approximated using Gibbs sampling, a popular inference
algorithm on Factor Graphs [5]. In a real-world detection
system that requires inference in near real-time, Gibbs sam-
pling can produce an approximate result within a predefined
bounded time (e.g., the algorithm stops after 100 iterations).
Performance and ease of use are the main reasons for using
Gibbs sampling rather than using exact inference (for which
the complexity is exponential to the length of the sequence).
We briefly describe how a Gibbs sampler works.

A Gibbs sampler runs over N iterations. It starts with a

Registered physical location (categorical)
User Number of days since the last login (integer)
attributes | Has been compromised previously (boolean)
Login remotely (using secure shell)

Event Download sensitive file (.exe, .c)

Restart system service (secure shell server)
Large number of incorrect login attempts
Large number of open network connections

Table 3: Examples of user attributes and events.



(a1) Define factor functions using Construction Set

||

manual
definition

— N\
) Factor i
Construction functions !
!
P I-: 1
2008-2009 incident manual |
51 incidents reports definition Re-used :
for all users |
1
|
|
auto script :
raw logs extraction |
— !
1
) User | —w»
Testing events i
|
incident manual Represented :
1

2010-2013
65 incidents

reports extraction as .timeline files

(a2) Extract event sequences in Testing Set

events

§38~ 111

user state

(b1) Construct factor graph

(b2) Infer the user state sequence based on the observed user events.

(b1) For each user in the Testing Set, automatically construct a
factor graph based on the event sequences and the defined
factor functions (obtained from the Construction Set)

Exact inference
or Gibbs sampling

benign suspicious malicious

User ul is malicious
User u2 is benign

(b2) Infer user states

(c) Output predictions

Figure 4: Experiment flow with input is incident report or raw logs, and output is prediction of malicious users.

random user state sequence at iteration 0. At iteration 1, it
samples a new user state, starting at a user state s°. That
sampling process is conditioned on the value of the previous
user state sequence and the Factor Graph. In the next step,
this sampling process is repeated for the next user state s°
and so forth, until it reaches the last user state s™. That
concludes the sampling process for a user state sequence at
iteration 1. The Gibbs sampler repeats the iteration process
and stops when it reaches one of the two termination condi-
tions: 1) N iterations, or ii) the user state sequence converges
(i.e., the user state sequence does not change from iteration
k to iteration k + 1).

6. EVALUATION OF ATTACKTAGGER

This section describes the incident dataset, generation of
the factor functions, construction of Factor Graphs, and
evaluation of AttackTagger.

6.1 Threat model

We consider networked computers in an enterprise envi-
ronment (NCSA) where adversaries come from outside the
enterprise perimeter. We assume that the monitoring in-
frastructure at NCSA was implemented to capture events
leading to attacks [18].

6.2 Dataset

We use data on 116 real-world security incidents observed
at NCSA during a six-year (2008-2013) period. The inci-
dents contain sophisticated attacks, such as tampering with
system services (e.g., SSHd) to steal credentials, misuse of
computing infrastructure (to build botnets, send spam emails,
or launch denial of service attacks), or remote exploitation
of Virtual Network Computing servers to get a system shell.

Incident data. The incident data include incident re-
ports and raw logs. For each incident in our dataset, we
obtained its incident report, manually created by NCSA se-
curity analysts in free format text. Each incident report
contains a detailed post-mortem analysis of the incident, in-
cluding alerts generated by NCSA security monitoring tools.
An incident report often includes snippets of raw logs (e.g.,
syslogs, network flows, and Bro IDS logs) associated with
malicious activities. Incident reports may also contain ex-
tra information about the incident, such as records of emails
exchanged among security analysts during the incident.

Most incidents considered in our dataset are related to
multi-staged attacks, in which an attack spanned a duration

of 24 to 72 hours. Thus, for a subset of security incidents
we also gathered the raw logs for a period of 24 to 72 hours
before and after the NCSA security team detected a given
incident. That duration of time is sufficiently long to cover
most of the traces of attacks in our dataset. Since the data
retention policy changed during 6 years when incident data
were being collected, the raw logs were only available for a
subset of incidents (Table 4). The raw logs are valuable be-
cause they captured activities of both benign and malicious
users during the incidents.

Construction Set and Testing Set. The data on 116
incidents have been partitioned into two disjoint sets: (i) a
Construction Set of 51 incidents collected during the 2008-
2009 period, and (ii) a Testing Set of 65 incidents collected
during the 2010-2013 period. We used the incident data from
the Construction Set to extract the set of events observed
during the incidents and to define the factor functions. We
use the Testing Set incident data to construct the Factor
Graph for each user and to evaluate the detection capabili-
ties of the constructed Factor Graphs.

The partition was based on the following. In the 2008-
2009 period, a subset of the incidents were credential steal-
ing incidents. Our conjecture is that, in many incidents
observed during the 2010-2013 period, the attackers used
the stolen credentials, exploited weak user passwords, or
used similar attack patterns (e.g., remote login, download
sensitive file, and escalate privilege) to infiltrate the NCSA
infrastructure. As a result, our model has been constructed
using the Construction Set and evaluated using the Testing
Set. Table 4 summarizes the two disjoint sets.

Ground truth. The benign and malicious users provided
by incident data are considered the ground truth in our eval-
uation. The 51 incident reports and 18 incident raw logs in
the Construction Set identified 46 malicious users, 5 benign
users misclassified as malicious by NCSA security analysts,
and 2,612 benign users who were involved in the incidents.
Based on post-incident analysis, the 65 incident reports and
5 incident raw logs for the Testing Set identified 62 mali-
cious users, 3 benign users misclassified as malicious users
by the NCSA security analysts, and 1,253 benign users who

Available Data

Data Set Tncident reports

Raw logs

Construction Set (51) | 51 18

5

65

Testing Set (65)

Table 4: Summary of the incident dataset



Incident report Events

The security team started receiving some ssh ANOMALOUS_HOST

suspicious alerts from the machine <machine> for the
user <user>. There were also some Bro
HTTP_HotClusterConn alerts from the machine
<machine> as well. From the Bro sshd logs the user
ran the following commands

HTTP_HOTCLUSTER_CONN

GET_HOST_INFO
uname -a GET_LOGGEDIN_USERS
w DISABLE_HISTORY

unset HISTFILE SENSITIVE_URL

wget <xx.yy.zz.tt>/abs.c -0 a.c;gcc a.c -o a; COMPILE

a1) Manual conversion from incident report to events

Raw logs Events

sshd: Accepted <user> from <host> LOGIN

HTTP GET vm.c (bad-domain.com) SENSTTIVE_URL

HTTP GET vm64.c (bad-domain.com) SENSTTIVE_URL

sshd: Received SIGHUP;

restarting. RESTART_SYS_SRV

a2) Automatic conversion from raw logs to events

Figure 5: Manual and automatic conversion of incident reports and raw logs to events.

were involved in the incidents. In total, nearly four thou-
sand users logged into the target system during the six year
(2008-2013) period. When counting the number of users, the
same user u observed in separated incidents is considered as
separated users. There could be hidden malicious users who
were not indicated in the incident reports by the NCSA se-
curity analysts. Our model detected six hidden malicious
users (Section 6.5).

6.3 Extraction of events and definition of fac-
tor functions

Given the data for an incident, we extracted user sessions
from the incident report and the raw logs. Usually there
were several hundred user sessions in an incident.

Extraction of events. A sequence of events was ex-
tracted from each user session. In the case of a raw log
snippet listed in the written incident report, we used reg-
ular expression scripts to automatically extract the corre-
sponding events. In the case of a textual description of a
user activity, we manually extracted a list of events in an
order that matched the textual description (to the best of
our knowledge). The textual descriptions often do not in-
clude an accurate timestamp associated with each event, but
rather were arranged in an order that we inferred from the
incident reports. To illustrate our manual extraction pro-
cess, an excerpt of a written report and the extracted events
are given in Figure 5-al.

When the raw logs corresponding to a user session were
available, regular expressions scripts were used to convert
them to a sequence of events. Each log entry in the raw logs
was mapped to a unique event identifier and event metadata,
including epoch timestamp and the user identifier who trig-
gered the event. Order of events happenned in the raw logs
are inferred from the timestamps. Examples of a log entry
and the corresponding event are illustrated in Figure 5-a2.
For incidents for which we have both the incident report
and the raw logs, we combined the events extracted from
the written report and the raw logs.

Preprocessing of incident data resulted in a list of .timeline
files for each incident in the Testing Set. Each file contains a
sequence of events for a user and the ground truth informa-
tion, indicating whether the user is malicious or not. There
were 1,315 users and 65,389 events for the incidents in the
Testing Set.

Definition of factor functions. The factor functions
were defined manually using incident data from the Con-
struction Set and experts’ knowledge of the system. In the
following, we illustrate the three types of factor functions
derived from real incidents in the Construction Set.

A Type-1 factor function can directly associate an event
with a malicious user state when the event is an obvious

violation of a security policy, e.g., a simple factor function
could capture the following relation: the user downloads a
known exploit/malware file (the observed event) implies the
user is malicious (the assigned user state). A Type-1 factor
can also capture a less obvious policy violation, e.g., the
user logs in from a remote location (the observed event)
implies the user is suspicious (the assigned user state). The
accuracy of the established association between the event
and the user state depends on the representativeness of the
data on the past incidents and the confidence of the expert.
More advanced factor functions, i.e., Type-2 and Type-3,
take into account the knowledge of the user state, as de-
termined based on the earlier events observed during the
progression of the incident. As a result, Type-2 and Type-
3 factor functions can assert the user state with a higher
degree of confidence. For example, a Type-2 factor func-
tion could assert the following relation: the user downloads
a file with a sensitive extension (the most recent event) and
the user state is suspicious (determined based on an ear-
lier event) imply the user state is malicious. Type-3 factor
functions are extensions of the Type-2 factor functions, in
which the user profile is taken into account because of the
flexibility of Factor Graphs. For example, a Type-3 factor
function could assert the following relation: a user has been
previously compromised (established based on the user pro-
file) and the user state is suspicious (determined based on
an earlier event) and the user restarts a system service (the
most recent event) imply the user state is malicious.
Following our illustrated definitions, practitioners can con-
struct their own factor functions based on their events and
expert knowledge of their target systems. We defined a total
of 65 factors, in which there are 29 Type-1 factors, 34 Type-
2 factors, and 2 Type-3 factors. Due to space limitation, a
complete list of factor functions is available online 2.

6.4 Construction and inference on Factor Graph

Given the defined factor functions, we constructed a Fac-
tor Graph for each user session (per-user Factor Graph) and
performed inference on the constructed Factor Graphs.

Construction of Factor Graphs. Each per-user Factor
Graph was used to re-evaluate the user state (benign, suspi-
cious, or malicious) on arrival of a new event. The resulting
Factor Graphs were dense with many edges, since the en-
tire defined factor functions have to link all of the events in
the user event sequence. For a sequence of n user events, a
Type-1 factor function links each event e’ with the user state
s' (i = 1..n). The process is repeated for the Type-2 and
Type-3 factor functions with their corresponding events and
user states. Figure 5 shows the experimental flow, including
the process of constructing a Factor Graph for each user.

http://bit.ly /preemptive-intrusion-detection
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Figure 6: An attack timeline: the first event is observed at
to; AttackTagger detects the attack at t,,; the attack finishes
at t,; security analysts detect the attack at t5. Each square
dot is an event related to the attack.

In our experiments, the weights for the factor functions
were assumed to be equal (i.e., the weight was 1). No train-
ing was performed to obtain the weights. The main difficulty
in determining weight was the required human supervision
for labeling each event with a user state. A value of a user
state must be assigned for each observed event (i.e., whether
the corresponding user state of the event is benign, suspi-
cious, or malicious), and that is an arduous manual process
taking into account about 300,000 observed events (2008-
2013). Despite the use of equal factor weights, our model
still achieves a good detection performance compared with
detection by security analysts (Section 6.5).

Inference of user states on Factor Graphs. In Figure
5-b2, given a constructed Factor Graph of a user session, the
user state sequence was approximated using Gibbs sampling
[5] in the OpenGM library [2]. Runtime performance of our
model was evaluated on a desktop running Ubuntu 12.04 on
Intel i5-2320 CPU at 3.00 GHz with 6 GB of RAM.

6.5 Empirical results

Our model was able to detect most of the malicious users
(74.2%) relatively early (i.e., before system misuse). More
importantly, our model uncovered a set of six hidden mali-
cious users, which had not been discovered by NCSA secu-
rity analysts. In this section, we describe how we analyzed
the detection timeliness and detection accuracy of our model
using the Testing Set.

6.5.1 Timestamps and ordering of events

We used Lamport timestamp (or logical clock) to establish
the relative order of events [11]. The Lamport timestamp
was used because absolute timestamps of events were not
available for most of the incidents in our dataset.

Each event in a user session was assigned a Lamport times-
tamp (specifying the order of events) or an absolute times-
tamp. For example, when a user session had a single event a,
its Lamport timestamp was C(a) = 1. As more events were
observed, the events were assigned increasing values of the
Lamport timestamp, such that if an event a happened before
b, then C(a) < C(b). For incidents for which raw logs were
available, each event was assigned an absolute timestamp in
addition to its Lamport timestamp.

Figure 6 illustrates an event timeline of a malicious user.
In the following, we refer to a timestamp as either a Lamport
timestamp or an absolute timestamp, depending on the con-
text. Consider a sequence of events to is the timestamp of
the first observed event, t,, is the timestamp when Attack-
Tagger concludes the user is malicious, ¢, is the timestamp
of the last observed event, and ¢s is the timestamp when
the malicious user is detected by a security analyst. We de-
fine the attack duration t, of the malicious user to be given
by to = tn — to. A Lamport attack duration or an abso-
lute attack duration can be derived from that formula. In
practice, a larger Lamport attack duration (expressed in the
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Figure 7: The x axis is the Lamport attack duration (inci-
dent time) of the malicious users normalized to the range
[0-1]. Each row (incident id) in the y axis is a malicious user
detected by AttackTagger in an incident. The dot in a row
represents the time when the malicious user was detected by
AttackTagger.

number of events) corresponds to a larger number of events
during the attack and indirectly corresponds to an absolute
attack duration (expressed in seconds, minutes, or hours).
To measure the absolute attack duration, we need an abso-
lute timestamp to be associated with each event.

All reported incidents were discovered by NCSA security
analysts after system misuse, when attack payloads had al-
ready been executed; that means t; > t,. Our objective is
to improve the detection time of the incidents, i.e., to detect
a progressing attack as early as possible.

6.5.2 Detection timeliness and preemption timeliness

We use two metrics to characterize the detection capabil-
ities of our approach.

Detection timeliness characterizes the responsiveness
of an intrusion detection system to an attack. The detection
timeliness is measured by tq = t., —to. A Lamport detection
timeliness (LDT) was computed using Lamport timestamps
associated with each event. An LDT corresponds to the
number of events observed from the start of a user session
until the determination that the user was malicious.

In addition, for incidents for which raw logs were avail-
able, we computed their absolute detection timeliness (ADT)
using the absolute timestamp associated with each event.
ADT provides the absolute time duration from the start of
the user session until the determination that the user was
malicious. Shorter detection timeliness is better.

Preemption timeliness characterizes the amount of time
that a human or an automated system had to respond to an
attack, from the time when a user was identified as ma-
licious until the time of the last observed user event. The
preemption timeliness is measured by t, = t, —t,». Preemp-
tion timeliness was measured only for incidents for which a
ground truth on when the attack was stopped was available.

In our experiment, a Lamport preemption timeliness (LPT)
was computed using the Lamport timestamp associated with
each event. In addition, for incidents for which raw logs were
available, we computed their absolute preemption timeliness
(APT) using the absolute timestamp associated with each
event. Longer preemption timeliness is better.

Detection and preemption timeliness. The Lamport
detection timeliness and the Lamport preemption timeliness
are presented by detection points in Figure 7. For example,
malicious user 15 was detected by AttackTagger when the
malicious user had progressed 24% of the total attack dura-
tion represented by the number of observed events.



Certain insights can be drawn from timeliness measure-
ments. In total, our approach detected 46 of 62 (74.2%)
the malicious users. Of the detected malicious users, 41
of 62 (66.1%) were detected before the attackers delivered
their attack payloads. We considered only 62 of 65 incidents
when computing detection performance, since we excluded
the three incident reports that misclassified three benign
users as malicious. 5 of the 62 (8.1%) malicious users were
detected at the last stage of the attacks. 12 of the 46 iden-
tified malicious users were identified at the first observed
event, at which they violated an obvious security policy (e.g.,
downloaded known malware or logged in using an expired
account).

Event Description

UserState

A user supplies an incorrect
credential at login. Repeated
alerts indicate password guessing
or bruteforcing.

INCORRECT
PASSWORD
(5 times)

benign

LOGIN A user logs into the target system. SUSPLCIOUS

A user connects to a high-risk
domain, such as one hosted

using dynamic DNS

(e.g., .dyndns, .noip) or a site
providing ready-to-use exploits

(e.g., milwOrm.com).

The dynamic DNS domains can be
registered free and are easy to set up.
Attackers often use such domains

to host malicious webpages.

HIGHRISK

DOMAIN suspicious

A user downloads a file with

SENSITIVE a sensitive extension

URL malicious

Such files may contain shell
code or malicious executables.

A user connects to an Internet
Relay Chat server. IRC are often
used to host botnet Control servers.

CONNECT

IRC malicious

A user requests a URL containing
known suspicious strings,
SUSPICIOUS | e.g., leet-style strings

URL such as explOit or r00t,

or popular PHP-based

backdoors such as ¢99 or r57.

malicious

Table 5: Observed events during incident 2010-05-13.

Detection timeliness of an example incident.

In incident 2010-05-13, the following sequence of events
was observed (Table 5), as determined from the incident
report. After infiltrating the target system, the attackers
started delivering the payloads by connecting to a high-
risk domain (milwOrm.com, which provides ready-to-use ex-
ploits), downloading a sensitive file (xploit.tgz), and then
placing a backdoor that connected to an external IRC server
(irc2.<bad-domain>.fi). Our approach identified the user as
suspicious after repeated incorrect login attempts (event IN-
CORRECT_PASSWORD, LOGIN and
HIGHRISK_DOMALIN ). Most importantly, our Factor Graph
based approach identified the user as malicious immediately
when attack payloads began to be delivered (events SENSI-
TIVE_URL, CONNECT_IRC, and SUSPICIOUS_URL).

For the 5 incidents for which we did not detect the ma-
licious user until the end of the attacks, the main reason
was a limited number of events generated by the monitor-
ing system during these incidents. For example, in inci-
dent 2010-10-29, only two events were observed: ANOMA-
LOUS_LOGIN and DISABLE_BASH _LOGGING. A better
monitoring infrastructure would improve the detection time-
liness. For a discussion of the 16 incidents for which we did
not detect the malicious users, refer to the False negatives

paragraph in the next section.

Measuring both LDT and LPT. To get a summary
of detection timeliness for a set of incidents, we used a new
metric to measure both LDT and LPT, called the area under
the Lamport timeliness curve (AULTC). An AULTC value
of 1 means that all malicious users were identified from the
first observed event (in theory), which is ideal. An AULTC
value of 0 means that all malicious users were identified af-
ter the fact (in reality, by the NCSA security team). Using
a Lamport timeliness curve formed by connecting the de-
tection points in Figure 7, we obtained an AULTC of 62.5%
normalized for 46 detection points. Compared to human de-
tections, which often happen after system misuse (AULTC
= 0), our model is relatively good at early detection.

Absolute Detection Timeliness. For a subset of 5 incidents
in the Testing Set, we had the raw logs. For those inci-
dents, we computed the ADT values over the attack duration
(in seconds): 1.97/1.97, 59.00/3,601.00, 1,787.00/1,787.00,
3,600.00/3,600.00, and 10,897.00/21,913.00. The best result
was detection of a malicious user at the very first minute
(59th second) of an hour-long attack (3,601 seconds). In
that case, the aggressive attacker caused a burst of security
events and/or alerts. The attacker logged in using a stolen
credential from a remote location, and then immediately
collected system information (using the command uname -
a), and downloaded privilege escalation exploits stored in .c
files; that gave our model enough evidence to conclude that
the user was malicious. Our detection timeliness is better
than that of human detection, which only detects attacks
after system misuse.

6.5.3 Detection performance

Detection performance was evaluated using standard per-
formance metrics for machine learning classifiers. The true
positive rate (TP), i.e., the detection rate, is the percentage
of malicious users who are correctly identified as malicious.
The false positive rate (FP) is the percentage of benign users
who are incorrectly identified as malicious. The true nega-
tive rate (TN) is the percentage of benign users who are
correctly identified as benign. The false negative rate (FN)
is the percentage of malicious users who are incorrectly iden-
tified as benign.

True positives. AttackTagger detected 46 of 62 (74.2%)
malicious users relatively early. Most of the attacks were
detected before the attack payloads were launched. Our
model detected attacks as early as within the first minute of
observing events related to the attack.

False negatives. AttackTagger did not detect 16 out
of 62 (25.8%) malicious users. The major reasons for mis-
detection were: a lack of events (very few events were ob-
served), new event types (i.e., events that were not observed
in the incidents included in the Construction Set), and gen-
eration of only one type of events.

Specifically, for seven of the false negatives, input to our
model included only 1 to 2 events, which made it difficult
even for security analysts to reach a conclusion. That sug-
gests a need for comprehensive monitoring infrastructure
across a system and network stacks (e.g., at the kernel or
the hypervisor level) to capture attacker behavior. For three
of the false negatives, the malicious users performed one ac-
tivity repeatedly (e.g., using an incorrect credential), which
were seen as merely suspicious by AttackTagger. That phe-
nomenon can be addressed by refining the factor functions.
Similarly, for the remaining six false negatives, new event



Incident Activity Name P TN FP FN

AttackTagger 74.2 | 98.5 1.5 [ 25.8
20100416  Illegal activities Rule Classifier 9.8 96.0 1.0 90.2
20100513  Incorrect credentials (multiple times); Sending spam emails D T 2'1 0 106 00 0.00 79'0
20100513 Logging in from multiple IP addresses; Illegal activities < ecision _ree . - . :
20101029 Logging in using expired passwords; Illegal activities Support Vector Machine | 27.4 100.00 | 0.00 | 72.6
20101029 lllegal activities Table 7: Detection performance of the techniques
20101029 Illegal activities

Table 6: Six hidden malicious users uncovered.

types were observed (e.g., misconfiguration of a web proxy,
logging in using an incorrect version of SSH, or downloading
of adult content) that had not been captured in our factor
functions derived based on the Construction Set. The fix is
to update the factor functions continuously (which requires
human intervention) when system infrastructure changes or
when a new event of interest is observed.

False positives. AttackTagger identified 19 of 1,253 be-
nign users as malicious (1.52%), although these users were
not recorded as malicious in the incident reports. We ana-
lyzed the false positives for those incidents when raw logs
of the incident were available and discussed our analysis
with NCSA. Six of the 19 users were confirmed to have be-
haved maliciously and should be investigated further. Table
6 summarizes those users 3. Although we misidentified the
remaining 13 users, the discovery of the six malicious users
suggests that our method can uncover hidden attacks that
have been missed by NCSA security analysts.

6.5.4 Performance comparison

Using the Test Set, we compared our approach with other
types of binary classifiers. A primitive type of classifier
(baseline) is based on rules to detect attackers. More sophis-
ticated classifiers are learning-based such as Decision Trees
or Support Vector Machines.

The main difference between our approach and the others
is that our approach works with progressing attacks (i.e.,
using an incomplete sequence of events). The other binary
classifiers often rely on a complete sequence of events to
classify a user, so usually can be used only after attacks
have reached their final stage.

In the following, we compare the detection performance
of the selected techniques.

AttackTagger (AT), our approach, tags each observed event
with a user state using Type-1, Type-2, and Type-3 factors.

Rule Classifier (RC) is a baseline rule-based classifica-
tion model. We implemented it to identify attacks based
on the most frequently observed alert in the Construction
Set, namely a log in from an anomalous host.

Decision Trees (DT) are rule-based classification model
that groups decisions into a tree. They learn the rules from
previous attacks. We used the C'45 decision tree implemen-
tation in the scikit-learn machine learning library [14].

Support Vector Machines (SVM) are frequently used clas-
sifier that uses a hyperplane and margins to classify classes.
We used classi fier=Support Vector Classification, with ker-
nel=linear using the scikit-learn implementation [14].

Implementation parameters. Parameters of the afor-
mentioned techniques ,except AT, were optimized based on
the Construction Set. In our AT model, we constructed only
the factor functions from the Construction Set and consid-
ered all the weights of factor functions to be equal. The
training-free approach makes our approach less dependable

3Examples of illegal activities include download of a file with
sensitive extensions or execution of anomalous commands
(w, uname -a).

on a training set, i.e., there is less overfit.

Performance analysis. We compared our detection per-
formance and that of other techniques (Table 7).

The rule-based techniques (RC) performed poorly com-
pared to AttackTagger. The Rule Classifier (RC) has a true
positive rate of 9.8% since it identifies malicious users based
solely on the most frequent alert in the Construction Set:
a log in from an anomalous host. In the Testing Set, that
alert was not observed in many of the incidents.

The other techniques (DT and SVM) seem to have an
overfit problem, such that they only learn patterns of ex-
isting attacks in the Construction Set; the true negative is
100.0% for both, which means these models are conserva-
tive in classifying a user as malicious. As a result, they do
not generalize well in the Testing Set; their true positive are
21.0% and 27.4% respectively.

Comparing detection performance. In this experi-
ment, AT had the best detection rate among the techniques
(74.2% vs. 27.4% for the next-best technique SVM). We per-
formed a hypothesis test to show that the true positive rate
for AttackTagger is significantly better than the true pos-
itive rate for the SVM approach. Our null hypothesis Ho
is that AT and SVM have the same detection performance.
The alternative hypothesis H; is that AT and SVM have
significant different detection performance. We tested our
hypothesis using the McNemar test, a popular drug treat-
ments statistical test [19].

We measured differences in detection of AT and SVM. For
example, ATTSVM™ means that for a user, both AT and
SVM determined that the user was malicious. Similarly, we
measured the number of differences and agreements between
the two techniques by four metrics: a = ATTSVM™T, b =
ATTSVM~,c=AT-SVM*, andd = AT~ SVM~.

The McNemar test statistic is based on the number of
discordant pairs (identified by b and c¢) between the two
methods. The test statistic is computed by x* = (b+c¢)?/(b—
¢). In our case, a=17, b=48, c=0, and d=1,250; the test
statistic is x* = 48. A p-value can be inferred according to
the x? value. The inferred p-value is < 0.00001 (i.e., the
result is significant).

According to the test, we can safely reject the null hypoth-
esis Hp. It means that the detection performance of AT is
significantly different from that of the next-best (SVM); in
our case it has a better detection rate (74.2% vs. 27.4%).

6.5.5 Runtime performance

A detection model must come up with a decision in a
reasonable amount of time; otherwise, it misses the attack.
AttackTagger was able to tag user states with events within
seconds. Since we use Gibbs sampling for approximate in-
ference instead of exact inference, the time it takes to infer
the user states depends on sampling iterations and is linear
to the length of the event sequence. On average, it took At-
tackTagger 530 ms to tag an event. The minimum tagging
time was 328ms, the maximum tagging time was 644ms, and
the standard deviation was 0.1 for 65,389 events. The num-
ber of events can be limited by a fixed time-window or by
importance sampling of interesting events.



7. RELATED WORK

Intrusion detection systems have been investigated ever
since the Anderson report was published over thirty years
ago [1]. Most of the work has focused on signature-based
or anomaly-based techniques. Signature-based techniques
often identify only a stage of an attack that uses known
patterns [3]. Anomaly-based methods use profiles, statis-
tical measurements, or distance measurements to capture
abnormal behaviors of potential novel attacks at the cost of
overwhelming number of false alarms [6].

As IDSes have been widely deployed, dynamic infrastruc-
ture (e.g., a variety of constantly changing hosts and net-
work devices) presents new challenges [13]. IDS alerts are
generated from monitoring across system stacks and network
interfaces, e.g., network packet captures, authentication logs
(SSH or Kerberos), and access logs (HTTP requests). Such
diverse and numerous alerts challenge automated systems
to correlate alerts (i.e., normalization, aggregation, correla-
tion, and analysis of alerts) with an attack and to identify
users involved in the attack [17]. Given the correlated alerts,
security analysts still have to spend a significant amount of
time investigating false or insignificant alerts [13].

Probabilistic graphical models have been employed to model

uncertainty in multi-staged attacks. In attack scenario mod-
eling, BNs can model causal relations among high-level at-
tack stages [15]. A BN and its parameters can be derived
based on domain knowledge of the target system and known
attacks. The network allows inference on a potential attack
stage. The main challenge of BN is the assumption of the
model structure and its parameters, which have high un-
certainty in a constantly changing infrastructure. In attack
sequence modeling, Markov models such as MRFs define an
attack as a sequence of actions that causes a transition in
the underlying system state [9]. Previous sequence model-
ing techniques (such as variable length markov models or
matrix-based recommendation systems) built models based
on observed events [7]. Those techniques do not integrate
external knowledge of users or the target system (e.g., the
user profile in our model) to improve accuracy of inference.

To address the limitations of previous efforts, we use Fac-
tor Graphs, a type of probabilistic graphical model that uni-
fies BNs and MRFs [8, 4]. Unlike signature and anomaly
techniques, Factor Graphs do not rely on a single rule or
an anomaly measure. Instead, using factor functions, a Fac-
tor Graph collectively identifies attacks using rules, anomaly
measures, and sequential measures among observed events.
In our model, Type-1 factors represent rules and Type-2
factors represent sequential dependency among events and
user states. Moreover, Type-3 factors can incorporate user
profile and expert knowledge into our model.

Our technique does not mean to replace existing IDSes,
instead, our technique operates on top of monitoring data
provided by IDSes and system/network monitors. By com-
bining strengths of individual techniques, AttackTagger can
identify progressing attacks using only a partial observation
of events leading to the attacks.

8. CONCLUSION

In this paper, we evaluated the effectiveness of using Fac-
tor Graphs to detect progressing attacks at early stages. In-
cident data for 116 real-world security incidents were used
in our evaluation. Our approach i) detected 74% of the at-

tacks as early as minutes to hours before the system misuse
(whereas human detection always occurred after misuse) and
ii) uncovered six hidden malicious users from 65 incidents in
our Testing Set. In the future, we plan to investigate the
effectiveness of individual or groups of factor functions in
our detection performance.
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