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Abstract. SSO (single-sign-on) services, such as those provided by Facebook, 

Google and Microsoft Azure, are integrated into tens of millions of websites and 

cloud services, just like lock manufacturers offering locks for every home. Imagine 

you are a website developer, typically unfamiliar with SSO protocols. Your 

manager wants you to integrate a particular SSO service into a website written in a 

particular language (e.g., PHP, ASP.NET or Python). You are likely overwhelmed 

by the amount of work for finding a suitable SSO library, understanding its 

programming guide, and writing your code. Moreover, studies have shown that 

many SSO integrations on real-world websites are incorrect, and thus vulnerable to 

security attacks! SVAuth is an open-source project that tries to provide integration 

solutions for all major SSO services in all major web languages. Its correctness is 

ensured by a technology called self-verifying execution, which performs program 

verification at runtime. SVAuth is so easy to adopt that a website developer does 

not need any knowledge about SSO protocols or implementations. This paper 

describes the architecture of SVAuth and how to use it on real-world websites.  

1. Introduction 

SSO (single-sign-on) services, such as those provided by Facebook, Google and 

Microsoft Azure, are integrated into tens of millions of apps, websites and cloud 

services, just like lock manufacturers offering locks for every home. However, the 

integration practice is very ad-hoc: on one hand, protocol documentation and usage 

guides of SSO libraries are written by experts, who are like experienced 

“locksmiths”; one the other hand, most website programmers are not “locksmiths”, 

and inevitably fall into many pitfalls due to misunderstandings of such informal 

documentation. Security bugs in SSO integrations are continuously discovered in 

the field, which leave the front door of the cloud wide-open for attackers. SSO bugs 

are the primary examples when the Cloud Security Alliance ranked API integration 

bugs as the No. 4 top security threat [10]. These bugs have become a familiar theme 

in academic conferences [1][4][7][15][17][18][20] and Black Hat conferences 

[7][19]. 

We are working on an open-source project, called SVAuth, to provide every 

website with a SSO integration fundamentally immune from the aforementioned 
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bugs. Moreover, we try to make SVAuth a very easy and widely applicable solution 

for real-world adoption: (1) it is language independent, so it works with web apps 

in any language, such as PHP, ASP.NET, Python; (2) the default solution only 

requires installing an executable (or simply copying a folder), without any library 

integration effort; (3) a programmer can customize the default solutions for his/her 

special requirement. The customized solutions enjoy the same correctness assurance 

as the default ones; (4) the SVAuth framework can accommodate all SSO services.  

The correctness of every SSO solution in SVAuth is assured using our published 

technology called self-verifying execution (SVX) [14]. The basic idea of SVX is to 

perform program verification on a per-execution basis. In this sense, SVX is a type 

of runtime verification approach. We will briefly describe how the SVAuth’s 

object-oriented framework incorporates the SVX verification technology. This 

ensures that a correctness property defined at the most abstract level is satisfied in 

every execution of every concrete website implementation.  

Besides explaining the basic idea, the paper focuses on the source code 

architecture of SVAuth, and provides a walk-through on how to use SVAuth in 

various scenarios. We will also show the integration of SVAuth with MediaWiki 

and HotCRP as examples.  

Secure programming of web-based protocols is a nice problem space to apply 

runtime verification technologies like SVX. We hope programmers and researchers 

will join the SVAuth effort by contributing code to the project or by adopting the 

SSO solutions for their websites.  

2. The SVAuth framework 

This section explains the design and underlying technology of SVAuth. Readers 

who only want to use SVAuth can skip this section and jump to Section 3. 

SSO is a user authentication mechanism commonly seen on websites. For 

example, NYTimes.com’s login page has a button “Log in with Facebook”. When 

a user clicks the button, through an SSO protocol, Facebook will convince 

NYTimes.com that the visiting user is a particular user recognized by Facebook. In 

SSO’s terminology, Facebook is called the identity provider; NYTimes.com is 

called the relying party. 

SVAuth provides a solution for relying parties to easily and securely integrate 

SSO services provided by identity providers. The code of SVAuth is publicly 

available at https://github.com/cs0317/svAuth. Figure 1 illustrates the class 

hierarchy of the code, written in C# targeting the .NET Core runtime [1]. It has four 

levels. The first level defines the most generic concepts, like identity provider (IdP), 

relying party (RP) and authentication conclusion. More importantly, it defines a 

correctness property  to capture the intrinsic meaning of “an RP’s conclusion about 

the client’s identity is correct”. Defining  is a non-trivial job, involving fairly deep 

understandings about the notion of “authentication”. We skip the details of  in this 

paper. Readers can consider  as a property that all SSO systems should maintain.  

https://github.com/cs0317/svAuth
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The protocol level consists of classes derived from the generic level. These 

classes match the protocol specifications, such as those for OAuth 2.0 and OpenID 

Connect 1.0. Note that the boxes with dashed lines represent namespaces that we 

have not yet implemented. At the service level, more concrete classes are defined 

to implement SSO functionalities provided by various companies. There are over 

30 major companies in the world providing SSO services. SVAuth has implemented 

7 namespaces, each covering one service. We are expanding the coverage, and hope 

to support most SSO services. At the website specific level, a developer can choose 

to customize the SSO system by deriving classes from the upper levels in order to 

fit the specific need of a website. 

The verification goal. Having this class hierarchy, the verification goal of the 

SVAuth framework is: every concrete implementation in SVAuth should satisfy 

property  defined at the generic level. Next, we briefly explain the self-verifying 

execution approach to achieve this goal.     

2.1. Self-verifying execution (SVX) 

The basic idea of self-verifying execution (SVX) is to perform code verification 

at runtime on a per-execution basis. The details are described in our earlier paper 

[14], which explains the advantages of SVX and how it works. Below, we use a 

simple example to explain the technology. 

Imagine there are three collaborative websites, Alice.com, Bob.com and 

Charlie.com. Each website has an integer constant. They want to run a web-based 

protocol (i.e., a protocol driven by a browser) to determine which website holds the 

largest integer. Alice.com has a public method grab() to return Alice’s integer value; 

Bob.com has a method compare(m) to compare its own value against the value in 

the input message m, and return the larger one; Charlies.com has a method finish(m) 
to compare its own value against the value in the input message m, and calls a local 

method conclude(conc). The correctness property  is that: whenever 

conclude(conc) is reached, conc.value should be the largest value and conc.who 

should indicate the website holding the value.   

Figure 2 shows two executions when the three websites hold values 10, 40 and 

5 respectively. The left execution is expected by the programmer, and it results in 
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Figure 1: The class hierarchy of SVAuth 
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the correct conclusion <40, “Bob”>. However, the system is actually vulnerable 

because a malicious client can trigger an execution on the right, which results in 

<10, “Alice”>. The traditional goal of program verification is to find such attacks 

and reject the implementation. However, as we explained in the earlier paper [14], 

this kind of verification requires the programmer to build a precise model for the 

client, and the theorem to prove has to be inductive, because the client is basically 

an infinite loop to interact with the websites.   

SVX is much simpler. It does not require the modeling of the client. Instead, it 

lets a real client trigger an actual execution. During the execution, SVX records the 

method sequence being executed. In the end of each execution, it only proves that 

this method sequence satisfies property , rather than that every possible execution 

will satisfy property . Therefore, the theorem to prove is much simpler; it usually 

requires no induction and can be proven fully automatically.  

Figure 3 shows the SVX-enhanced execution. The only addition of SVX is the 

third message field, which is called SymT (symbolic transaction). In SymT, #grab, 

#compare and #finish are hash values automatically computed over the code of the 

corresponding methods using the reflection capability of the language. The hash 

values represent the unique semantics of these methods. To determine whether a 

conclusion is correct, we only need to prove that the final SymT logically implies 

. For example, Charlie.com:#finish(Bob.com::#compare(Alice.com::#grab())) 

implies , so <40, “Bob”> is correct and thus accepted. On the other hand, the 

previous attack sequence Charlie.com:#finish(Alice.com::#grab()) does not imply , 

so the conclusion <10, “Alice”> is incorrect, so it is rejected at runtime.  

The detailed specification of the SymT is given in Section IV.A in reference [6]. 

A SymT captures the facts whether a message is signed or unsigned, and whether it 
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Figure 2: An expected execution (left) and a successful attack (right). 
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Figure 3: A concrete execution of SVX. 
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is a server-to-server call or a browser-redirection. These determine whether the 

output of each method call was authenticated as coming from a known party or 

should be treated as untrustworthy and nondeterministic in our verification. Due to 

space constraints, we skip the details here. 

The current SVX library uses an off-the-shelf C# verifier, consisting of Bytecode 

Translator [5] and Corral [12] (see [14] for details). 

Runtime overhead of SVX. For every execution, SVX proves a theorem 

corresponding to the executed code sequence, so the runtime overhead seems too 

high to be practical. However, since the SymT only represents the code, not any 

concrete data value, every theorem can be effectively cached (by Charles.com in 

our example). Therefore, the runtime overhead of SVX is near zero, unless an 

attacker triggers a new execution sequence or the source code is revised.       

2.2. Incorporating SVX into the class hierarchy 
 Recall that the verification goal of SVAuth is to ensure all concrete 

implementations to satisfy the property defined at the generic level. A significant 

advantage of SVX is that the self-verifying capability can be inherited 

automatically, thus scaled up to all concrete systems. In SVAuth, only the upper 

two levels, i.e., the generic level and the protocol level, are aware of SVX. 

Programmers at the lower two levels only need to do normal OO inheritance, and 

every execution on every concrete implementation will be verified. 

It is worth pointing out that this advantage does not exist in static verification 

techniques. There is a well-known dilemma that a property statically proven for a 

base class may not hold for a derived class, which is usually discussed in the context 

of the Liskov Substitution Principle (LSP) [13]. The dilemma of LSP in real-world 

scenarios is often explained using the “Rectangle-and-Square” example [11].  

3. Using SVAuth on Websites 

Section 2 explains the SVAuth framework and the underlying verification 

technology. None of the knowledge is needed for a website programmer to use 

SVAuth. This section explains how to deploy SVAuth. From the deployment 

standpoint, SVAuth consists of two components, shown in Figure 4:  

(1) Agent: this is the C# code implementing the class hierarchy in section 2, 

with the SVX capability built in. The agent runs on the .NET Core runtime 

as an executable, listening on its own port. It bundles a verification toolchain 

that currently depends on .NET Framework and thus only runs on Windows, 

but we see no fundamental obstacle to porting the verification toolchain to 

.NET Core or adding support for the agent to use a remote verification 

service running on Windows. 

(2) Adaptor: a language-specific but protocol-agnostic component that is added 

to the RP website, communicates with the agent and makes the authenticated 

user identity available to the RP web application framework. For example, 

we have a PHP adaptor, an ASP.NET adaptor, etc.  
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The agent handles complex interactions represented by the dashed lines: suppose 

the identity provider is Facebook.com and the web app is written in PHP, then the 

agent’s job is to authenticate the user through Facebook.com, and call the PHP 

adaptor to set the authentication conclusion into a set of PHP session variables. 

However, the web app programmer does not see any of these interactions, but only 

need to remember the following simple interface: 

(1) “http://foo.com/SVAuth/adaptors/php/start.php?provider=Facebook” is 

the URL to start the Facebook sign-on; 

(2) The information about the authenticated user will be in the session variables, 

such as SVAuth_UserID, SVAuth_Email, SVAuth_FullName, etc.  

3.1. Three scenarios for deploying the agent 

Figure 4 does not explicitly show where the agent runs. There are three possible 

scenarios for the agent’s placement. 

Public agent. In the GitHub repository of SVAuth, we have a release of the 

adaptors. Using this release is the simplest way to incorporate SSO logins, because 

it by default uses a public agent running on port 3020 of server 

https://authjs.westus.cloudapp.azure.com. The web app programmer’s job is 

extremely simple: just copy the released adaptors folder into the website directory 

http://foo.com/SVAuth.  

Local agent. If a programmer does not want to use the public agent, perhaps 

because he/she wants to derive some customized classes in the agent, then setting 

up a local agent is an option. A local agent runs on the same server as the web app, 

i.e., foo.com. The programmer’s job is also simple: just do “git clone” the SVAuth 

repository onto the foo.com server. The “git clone” command will pull the whole 

SVAuth code, including the agent, the adaptors, as well as the dependencies BCT 

and Corral. To run the agent, install the .NET Core runtime, and use the command 

“dotnet run” inside the folder /SVAuth/SVAuth of the cloned repository. By default, 

the adaptors know that the agent runs on port 3000 of the local server.  

Private agent. A private organization can set up a server to run the agent, which 

serves all websites inside the organization. For example, the company owning the 

Identity Provider 
(e.g., Facebook.com)

Relying Party 
(e.g., foo.com)

Agent Web app

User
Adaptors

The only  interface a web app 
programmer needs to know

 

Figure 4: Agent and adaptors. 
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domain foo.com can set up a server SVAuth.foo.com to run the agent. The 

programmer uses “git clone” to get the code onto the SVAuth.foo.com server, 

following the steps described in the “local agent” scenario. Then, the programmer 

of every website follows the steps described in the “public agent” scenario, except 

that the configuration file of the adaptors should specify “SVAuth.foo.com” as the 

agent and “.foo.com” as the agent’s scope.  

3.2. Integrating SVAuth with real-world web apps 

The interface between the web app and the adaptors is really simple, as described 

earlier. All the web app programmer needs to do is to read user’s identity data from 

the session variables. This is independent of the SSO service and the language of 

the web app. To show the ease of the integration, we have integrated SVAuth with 

MediaWiki and HotCRP. MediaWiki is the software powering Wikipedia.org, and 

HotCRP is a sophisticated conference management system. The following two 

URLs are the two systems with SVAuth integrated: 

The MediaWiki demo: http://authjs.westus.cloudapp.azure.com  

The HotCRP demo: http://authjs.westus.cloudapp.azure.com:8000/  

The integrations were very easy. The MediaWiki integration only needs 8 lines 

of code changes to the MediaWiki user login plugin. The HotCRP integration has 

only 21 lines of changes. These integrations are documented in the 

“IntegrationExamples” folder in the code repository.  

Inside Microsoft Research, a MediaWiki website has been using SVAuth for 

nearly a year, which authenticates users through Microsoft Azure Active Directory. 

3.3. Currently supported SSO services and web languages 

The SSO services currently supported by SVAuth are: Facebook, Microsoft, 

Microsoft Azure Active Directory, Google, Yahoo, LinkedIn and Weibo (a major 

identity provider in China). The demo page for these services is at 

http://authjs.westus.cloudapp.azure.com/SVAuth/adapters/php/AllInOne.php. The 

currently supported languages are: PHP, ASP.NET and Python. We are expanding 

the coverage for SSO services and web languages.   

4. SVX and SVAuth in the context of runtime verification 

We believe that SVX and SVAuth bring some new perspectives to the research 

community.  In this section, we discuss them in the context of runtime verification.   

SVX’s relation to other runtime verification techniques. Similar to other 

runtime verification techniques, SVX performs the actual verification at runtime on 

a per-execution basis. The SymT string is a representation of an execution trace, 

and SVX is able to verify safety properties about traces. Relations can be drawn 

between SVX and Monitoring-Oriented Programming (MOP) [9]. MOP is a generic 

framework for programmers to specify relevant events and safety properties. The 

http://authjs.westus.cloudapp.azure.com/
http://authjs.westus.cloudapp.azure.com:8000/
http://authjs.westus.cloudapp.azure.com/SVAuth/adapters/php/AllInOne.php
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MOP framework automatically instruments the code to monitor these events, 

maintain monitored states and verify the safety properties. It will be valuable to 

think how SVX can utilize the automatic mechanisms in MOP. Currently, SVX 

requires the programmer to manually call the SVX library to compute the SymT 

(analogous to MOP’s event monitoring) and to verify a property (analogous to 

MOP’s property checking). In addition to automation, another advantage of MOP 

is to separate the monitoring logic from the logic of the monitored program. 

SSO and other potential domains for runtime verification. SSO is a good 

domain for runtime verification, because (1) it is a problem faced by many 

programmers, and its engineering practice is ad-hoc today; (2) it involves multiple 

organizations: protocol working groups, identity provider companies, SDK solution 

providers and website programmers, who work collaboratively across different 

abstraction levels, as shown in Figure 1; and (3) the desired safety assurances can 

be defined as trace properties. Thus, SVAuth, which builds SVX into the OO class 

hierarchy, is a suitable solution. 

Besides SSO, user authorization can be another problem domain. Mobile apps, 

social sharing web apps and IoT devices all require proper user authorization. It 

meets the above conditions (1) and (2). A new challenge is that the authorization 

objectives are often much more diverse than those for SSO. A research question is: 

how to precisely define these diverse properties (by individual programmers on a 

case-by-case basis)?  

Also, SVAuth is an instance of “protocol spec as code”. This concept has been 

put in practice in other areas. For example, the TPM (Trusted Platform Module) 2.0 

library specification [16] is primarily C code with a substantial amount of English 

comments (unlike most of today’s protocol specs, written in English with pseudo 

code samples as “comments”). It is valuable for the runtime verification community 

to identify other areas where industrial specifications can be written as code (e.g., 

like the abstract classes in SVAuth). The specifications can be for distributed 

systems, device drivers, online payments, and IoT (e.g., the AllJoyn framework [2]). 

5. Summary 
Integrating SSO services is often seen as a non-trivial programming job, which 

demands expertise and time. Moreover, the current practice is too ad-hoc, and SSO 

vulnerabilities are so pervasive that they have become a trendy topic in security 

conferences. We want to promote the SVAuth solution – it provides a higher 

correctness assurance, and is an easy solution for websites to integrate SSO. 

The underlying technology is self-verifying execution (SVX), which is a runtime 

verification mechanism. It is combined with the OO class hierarchy to form the 

framework for all concrete implementations to be verified with respect to a generic 

property defined over the base classes. SVAuth is extensible, so we hope 

researchers working on verification technologies contribute to the core components 

of the project, or build more SSO solutions within the SVAuth framework.  
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