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Abstract
This study characterizes GPU resilience in Delta1, a large-scale AI
system that consists of 1,056 A100 and H100 GPUs, with over 1,300
petaflops of peak throughput. We used 2.5 years of operational
data (11.7 million GPU hours) on GPU errors. Our major findings
include: (i) H100 GPU memory resilience is worse than A100 GPU
memory, with 3.2x lower per-GPU MTBE for memory errors, (ii)
The GPU memory error-recovery mechanisms on H100 GPUs are
insufficient to handle the increased memory capacity, (iii) H100
GPUs demonstrate significantly improved GPU hardware resilience
over A100 GPUs with respect to critical hardware components, (iv)
GPU errors on both A100 and H100 GPUs frequently result in job
∗Equal contribution.
1Delta is an HPC system operated by the National Center for Supercomputing Appli-
cations (NCSA) at the University of Illinois Urbana-Champaign.
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failures due to the lack of robust recovery mechanisms at the appli-
cation level, and (v) We project the impact of GPU node availability
on larger-scales and find that significant overprovisioning of 5% is
necessary to handle GPU failures.
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Uncorrectable Double-bit Memory Error Caused 

User Job Failure on H100

[scheduler][slurmctld][2024-11-05T03:25:38] 
Job started in ‘ghx4’ partition on gh083. 
[JobId=124966]

[gh083][kernel][2024-11-06T02:08:03] An uncorrectable 
double bit error (DBE) has been detected on GPU in 

the framebuffer at physAddr 0x13ddbc65a0 partition 

22, subpartition 3.[ErrorCode=XID 48]

[scheduler][slurmctld][2024-11-06T02:08:14] Job 
completed with error. [JobId=124966, ExitStatus=1]

…

[scheduler][slurmctld][2024-11-06T21:39:00] Allocated 

JobID=133973 (node starts reaccepting jobs)
~19 hours 

downt ime 

DBE led to 

user job 

failure.

Error

Recovery

Figure 1: A double-bit memory error (XID 48) occurred, and it is un-
correctable by the SECDED ECC HBM3 memory. Due to this double-
bit error, the user job scheduled on that GPU failed, as reflected in
the scheduler logs. Subsequently, this uncorrectable memory error
requires a node draining and reset to complete the row remapping
recovery action. The total recovery process for this incident took 19
hours, during which the nodewas unavailable for accepting new jobs.
This incident shows that a GPU error can lead to user job failures
and significantly impact node availability.

1 Introduction
Large-scale HPC systems are important not only for scientific work-
loads [49] but also for data analytics [1] and machine learning
(ML) [22]. The main components of these systems are specialized
accelerators, such as GPUs, that enable acceleration of computa-
tions, such as ML training [2, 53], ML inference [26], and simula-
tions [41, 48].

This paper studies the resilience of A100 GPUs and compares the
result with H100 GPUs of the GH200 Grace Hopper Superchips2,
together with their associated memory: 40 GB HBM2e on each
A100 GPU, and 96 GB HBM3 on each H100 GPU, respectively.
The A100 GPU nodes and H100 GPUs (GH200 Superchip) nodes
are operated as two independent systems sharing a storage cluster
running the Lustre file system, allowing us to study and compare the
two systems (refer to as Delta). The workflow on Delta [6] involves
users from universities nationwide and presents a spectrum of HPC
and ML workloads. The study uses 2.5 years of data on critical GPU
errors collected across the stated GPUs, encompassing 9.6 million
GPU hours of A100 GPUs and 2.1 million GPU hours of H100, a
combined 11.7 million GPU hours.

This study assesses (i) the resilience of GPU hardware and mem-
ory components; (ii) the error propagation paths in GPU memory,
GPU hardware, and NVLink interconnect; and (iii) the impact of the
observed GPU errors on user jobs. Figure 1 shows an example error
propagation path for an uncorrectable double-bit memory error
in H100 GPU that caused user job failure. The complete recovery
process required node draining and GPU reset, which took 19 hours
following the error detection.
Our major findings include:

(i) H100 shows 3.2× lower per-GPU mean time between errors
(MTBE) compared to A100 for uncorrectable ECC memory errors.
The per-GB MTBE of the H100’s HBM3 memory is 24% lower (∼
8.5M hours) than the A100’s HBM2e memory (∼11.3M hours). We
2GH200 Superchip, hereafter.

conjecture that the reduction in memory resilience stems from
H100’s higher memory capacity.

(ii) The GPU memory error-recovery mechanisms on A100 and
H100 GPUs (e.g., memory row remapping, error containment) [37]
improve GPU memory resilience and reduce service interruption.
We observed that these mechanisms mitigate (e.g., using mem-
ory row remapping) 92% of uncorrectable ECC memory errors on
H100 GPUs. However, the memory error-recovery mechanism is
insufficient to handle the increase in memory capacity and the cor-
responding increase in row remapping events on the H100 GPUs.

(iii) H100 GPUs demonstrate significantly improved hardware
resilience over A100 GPUs, with respect to critical components
such as GSP3, NVLink, and PMU SPI4, which were major sources
of job failures in A100 systems. We attribute this to driver-level
enhancements and tighter integration [34, 36], which contribute
to improved resilience. Specifically, comparing H100 and A100
GPU hardware, we observed (a) a significant reduction of GSP
errors on H100 (only 3 cases in our measurement period) and (b)
the elimination of PMU SPI error propagations, which on A100
GPUs can lead to MMU errors 88% of times with 90% leading to
user job failures, (c) no NVLink errors on H100 GPUs during the
measurement period.

(iv) GPU errors on both A100 and H100 GPUs frequently result
in job failures due to the lack of robust recovery mechanisms at the
application level. Except for MMU and NVLink errors, other GPU
errors cannot be handled by application-levelmechanisms, resulting
in close to 100% job failure rate. The underlying cause of job failures
differs by GPU type: hardware errors are the predominant cause in
A100 GPUs, whereas memory errors are the primary cause in H100
GPUs. Overall, we find that application-based recovery strategies
are largely ineffective; hence, there is a compelling need to improve
resilience at the GPU memory and hardware level.

(v) The overall availability per-GPU node is approximately 99.4%
for A100 GPUs and 99.3% for H100 GPUs, corresponding to a down-
time between 9–10 minutes per day. We projected the impact of this
measured availability on larger scales via emulation. For example,
to maintain 99.9% availability at the job level, overprovisioning of
5% would be necessary. While at first glance, such overprovisioning
would appear to be a small cost, for the above example, it would cost
over $1 million per month. If GPU node availability were improved
to 99.9%, the required overprovisioning would reduce by 2.5×.

Putting the paper in perspective. Previous studies on char-
acterizing GPU resilience in large-scale systems [11, 12, 18, 19, 32,
33, 38, 39, 51, 52] focus on GPU memory errors in older GPU gen-
erations (Tesla, Kepler, and Volta) that lack the latest resilience
(e.g., row remapping, error containment, NVLink CRC-retry) and
performance features (e.g., GPU System Processor) introduced in
NVIDIA Ampere-generation GPUs. A recent study from Meta [25]
characterizes cluster-level resilience for two large-scale machine
learning clusters equipped with A100 GPUs. Our paper provides
a deeper understanding of GPU errors and failures of two recent
3A GPU system processor (GSP) is an onboard co-processor that offloads driver tasks
from the CPU for latency and performance improvement.
4PMU on an NVIDIA’s GPU regulates the frequency, voltage, and power of the GPU
based on various factors such as temperature and power cap. SPI stands for serial
peripheral interface, which serves as the communication channel between peripheral
hardware.
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Figure 2: System architecture and specifications of Delta. This study
focuses on the H100 and A100 GPU nodes.

generations of GPUs, A100 and H100, and their impact on a broad
set of HPC/ML applications. To the best of our knowledge, this is
the first study on A100 and H100 GPU errors in HPC/ML systems.

All software, datasets, and analysis scripts are available in the
AD/AE materials and at https://doi.org/10.5281/zenodo.15287639.

2 Background
This section provides information on (i) Delta specification, (ii)
Delta overall GPU utilization, GPU operational environment, and
workloads, (iii) critical GPU error categories used in this study, and
(iv) GPU error management and recovery.

2.1 Delta Specifications
Delta Specifications. Figure 2 shows the layout of Delta, which
consists of a cluster of 106 4- and 8-way A100 40 GB GPU nodes
with 448 A100 GPUs, and in addition, it has a second cluster of
152 4-way GH200 nodes with 608 H100 96 GB GPUs, a total of
1,056 A100 and H100 GPUs. The two clusters share a common
storage cluster running Lustre Filesystem. Our study focuses on
the resilience of A100 GPUs and H100 GPUs (the GPU of GH200),
as they are optimized for AI/ML workloads, exhibit the highest
utilization, and incorporate the latest resilience features.

Note that the H100 GPUs studied here are integrated in GH200
Superchips, tightly coupled to NVIDIA Grace CPUs via NVLink-
C2C interconnect, distinguishing them from discrete H100 GPUs.
While the H100 microarchitecture and memory specifications are
consistent across both variants, differences in CPU–GPU integra-
tion may lead to variations in resilience characteristics.

2.2 Delta GPU Operational Environment
A100 and H100 GPUs ran in comparable operational conditions in
terms of (i) utilization, (ii) cooling/temperature, and (iii) workloads.

Overall Utilization. Delta’s NVIDIA A100 GPUs are frequently
scheduled and utilized, with an average GPU utilization of 51%
during the operational period. NVIDIA H100 GPUs show a slightly
lower average utilization (41%) than A100 GPUs.

Cooling and Temperature. Delta’s A100 and H100 GPUs are
liquid-cooled from shared facility water supply through indepen-
dent cooling loops. At average utilizations, their mean temperatures

are 40◦C (A100) and 37◦C (H100), withmaximums of 49◦C and 48◦C,
respectively, indicating comparable operational conditions.

Workloads.Weuse the allocatedDelta projects’ Field-of-Science
distributions as a proxy for workload characterization. Both GPUs
handled similarly diverse workloads with comparable distribu-
tions across the top five fields (A100s/H100s): Computer Science
(30.4/32.8%), AI & Intelligent Systems (18.1/29.1%), Applied CS
(4.7/4.2%), Biophysics (5.1/1.7%), Materials Engineering (3.6/1.4%)
for A100/H100, respectively.

2.3 NVIDIA GPU Error Categories
NVIDIA GPU errors are reported as XID errors. In this study, we
selected a subset of XID errors that are described as common and
high-impact by NVIDIA’s Developer Manuals [35, 37], NVIDIA
Developer Forums and Blogs, and Delta site reliability engineers
(SREs). We primarily collected errors and their associated recov-
ery events. The selected XID errors/events indicate GPU issues
that often cannot be resolved without SRE’s interventions (e.g.,
node service and GPU replacement). The selected XIDs and their
corresponding GPU errors are described in Section 4, Table 1. We
categorize the selected GPU errors into three categories: (i) GPU
hardware, which includes all onboard hardware except for GPU
memory and NVLink interconnect, (ii) NVLink interconnect, and
(iii) GPU memory. Note that General GPU Software Error (XID 13)
and Reset Channel Verification Error (XID 43) are usually caused by
user jobs and do not impact the health of the GPU [35]; we excluded
those errors from our study.

GPU Hardware Errors. The critical GPU hardware errors we
studied include MMU5 errors, GPU Fallen Off the Bus errors, GSP
errors, and PMU communication errors. We do not consider other
GPU hardware errors in our study. GPU hardware errors can lead
to user job failures, GPU halt, and data corruption. Among those
errors, GPU Fallen Off the Bus and GSP errors lead to GPU failures,
and manual GPU resets or node reboots are required to recover
from the error [35].Delta SREs monitor GSP errors closely to ensure
timely recovery to maintain GPU availability.

GPU Interconnect (NVLink) Errors. GPU-GPU NVLink er-
rors are caused by faulty GPU hardware, connectors, or improper
connector installation during system integration, and can lead to
GPU unavailability and user job failures. NVLink errors impede
data transfer between GPUs and reduce computational throughput.
A GPU reset or node reboot is required to clear NVLink errors [35].

GPU Memory Errors. GPU memory errors included in this
study are double-bit errors (DBEs) and consecutive single-bit errors
(SBEs)6. Individual SBEs are not logged, as they are automatically
corrected by ECC. DBEs and consecutive SBEs are considered un-
correctable ECC memory errors by the NVIDIA driver, and they
trigger downstream error-recovery mechanisms [35, 37], which are
introduced in Section 2.3. Failures in these mechanisms can lead to
GPU/node failures and require GPU or node reboots to recover [35].
Delta SREs continuously monitor uncorrectable ECC memory er-
rors and error-recovery failures to ensure timely replacement of
faulty GPUs.
5The memory management unit (MMU) provides essential memory I/O functionalities.
6Consecutive SBEs are multiple single-bit error (SBE) occurrences at the same memory
location.
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Figure 3: NVIDIA memory error recovery process for A100 and
H100 GPUs.

2.4 NVIDIA GPU Error Management
Here, we provide an overview of the resilience architecture of
NVIDIA A100 and H100 GPUs.

GPU Memory. Figure 3 shows the uncorrectable ECC memory
error-recovery process [37] for A100 and H100 in more detail. The
primary mechanism for mitigating uncorrectable ECC memory er-
rors for A100 and H100 GPUs is row-remapping, wherein the faulty
memory row is replaced with a spare row, and a row-remapping
event (RRE) is logged. The actual row remapping happens at the
next GPU reset (e.g., during node reboot or maintenance). If there
are no spare memory rows, a row remapping failure (RRF) is indi-
cated [35, 37].

A100 and H100 GPUs support online recovery mechanisms such
as error containment and dynamic page offlining [35, 37] for miti-
gating uncorrectable ECC memory errors with minimal node in-
terruption. The dynamic page offlining marks the faulty memory
page as unusable without requiring a GPU reset to maintain avail-
ability. The error containment procedure terminates user processes
using the faulty memory address to prevent error propagation
to other applications. Successful error containment is logged as
a Contained Memory Error, whereas an unsuccessful error con-
tainment is logged as an Uncontained Memory Error. Failure in
a row-remapping or error containment can cause a GPU failure
that requires a GPU reset or node reboot. Delta SREs monitor row-
remapping failures and replace GPUs that repeatedly emit such
errors.

GPUHardware.While theGPU caches andmemory are SECDED
protected, information on failure-recovery mechanisms on GPU
hardware, including peripheral hardware such as GSP, PMU, or SPI
communication channels, is limited.

GPU Interconnect (NVLink). NVLink employs Cyclic Redun-
dancy Checks (CRCs) for error detection to ensure the integrity of
flow control digits and data. Upon encountering a CRC checksum
error, NVLink retries packet transmissions from the last-known
good packet.

3 Methodology
3.1 Data Sources
Our analysis was performed on data collected from Delta over its
operational period: (i) 895 days from October 2022 to March 2025
for A100 GPUs and (ii) 146 days from October 2024 to March 2025
for H100 GPUs, covering 11.7 million GPU hours. This section
describes data sources for Stage I : data collection and extraction in
the pipeline in Figure 4.

Stage I: Data 
Collection & Extraction 

Delta HPC

System & 
Slurm 

Scheduler 
Logs

Stage II:
Pre-Processing 

Stage III: 
Data Analysis

Error Coalescing

NVIDIA GPU (XID) 
Error RegEx Matching

GPU Error Primary 
Error Keyword 

Matching

MPI/SW Error RegEx

1

Error Statistic Metrics

Propagation Analysis

Impact on User Job

3

4

2

2022/10 
to

2025/03

NVRM: Xid 119, Timeout 
waiting for RPC from 

GSP! Expected function 
GSP_RM_CONTROL 

(0xffffffff 0x33303328).

Figure 4: Overview of our data collection, processing, and
analysis pipeline.

Algorithm 1: Error Coalescing and Persistence Analysis.
Input :Error logs with timestamps 𝐸 = { (𝑒1, 𝑡1 ), . . . , (𝑒𝑛, 𝑡𝑛 ) }, regex

patterns R = {𝑟1, 𝑟2, . . . }, time window Δ𝑡
Output :Coalesced errors with persistence duration 𝐸′

𝐸′ ← ∅ // Initialize output set
foreach pattern 𝑟 ∈ R do

𝐸𝑟 ← {(𝑒𝑖 , 𝑡𝑖 ) ∈ 𝐸 | 𝑒𝑖 matches 𝑟 } Filter errors with regex 𝑖 ← 1
// Loop through errors in a matched group
while 𝑖 ≤ |𝐸𝑟 | do
(𝑒first, 𝑡start ), 𝑡latest ← (𝑒𝑖 , 𝑡𝑖 ), 𝑡𝑖
// Loop through later errors within the matched group while
𝑖 + 1 ≤ |𝐸𝑟 | do
(𝑒next, 𝑡next ) ← (𝑒𝑖+1, 𝑡𝑖+1 )
// Error has identical message and is close in time if
𝑒next = 𝑒first and 𝑡next − 𝑡latest ≤ Δ𝑡 then

𝑡latest ← 𝑡next //Discard latest error 𝑖 ← 𝑖 + 1
else

break

// Store coalesced error and persistence duration
Add (𝑒first, 𝑡start, 𝑡latest − 𝑡start ) to 𝐸′
𝑖 ← 𝑖 + 1 // Move to the next unprocessed error

return 𝐸′

System logs. System logs collected from all compute nodes
capture events across system components. We created a set of reg-
ular expression (RegEX) patterns and used it to extract GPU error-
recovery log entries by referring to NVIDIA XID messages [35]
from the system logs (Figure 4, item (1)). The GPU error logs were
our major sources of error and recovery information.

Slurm scheduler database. Delta uses the Slurm Workload
Manager [60] (“Slurm scheduler” hereafter) for scheduling user jobs.
The Slurm scheduler database keeps track of user job scheduling
events, including the start and end times, the scheduled nodes,
resource usage, job status, exit codes, and the srun command line.
We used the Slurm database for user job failure characterization.

NVIDIA DCGM database. Delta uses NVIDIA Data Center
GPU Manager (DCGM) to collect metrics and status data from all
GPUs with a one-minute granularity. We used DCGM metric data
to characterize GPU utilization.

3.2 Data Processing Pipeline
This section focuses on Stage II and III of the data processing
pipeline in Figure 4, which pre-processes the raw logs, compute er-
ror counts, mean times between errors (MTBE), error propagation,
and impact on user jobs.

Error Coalescing Analysis. The error coalescing step in Fig-
ure 4, item (1) filters out duplicated errors. While most errors are
logged as isolated events, there are frequent periods during which
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the same error is logged repeatedly in close succession, i.e., there
are error bursts. During these bursts, the system continually detects
and attempts to recover from errors, which could lead to either sys-
tem recovery or failure. To prevent over-counting, we assume that
identical error logs within a short time interval (Δ𝑡 ) from the same
GPU are caused by the same issue. Thus, the error coalescing step
counts only the first occurrence by combining identical error log
lines from the same GPU within a predefined time interval (Δ𝑡 )
into a single error (see Algorithm 1). The remaining analyses in
this paper were conducted on errors after the coalescing. We set
Δ𝑡 = 5 as decreases in Δ results in more duplicated logs, while
further increase in Δ results in negligible changes in coalesced log
count.

Error Statistic Metrics. Using the coalesced error logs as input,
the pipeline computes standard error statistics metrics including
the error count and the MTBE as in [38] (Figure 4, item (2)). MTBE
allows fair comparison between GPU types with different total
operational hours. For errors that are not directly countable from
XID logs, we estimate their occurrence by correlating related XIDs
within the same time interval [35, 37, 38]. In particular, the number
of uncorrectable ECC memory errors can be inferred by summing
up the number of RREs and RRFs, as they are mutually exclusive
outcomes of an uncorrectable ECC memory error recovery event.
Subsequently, the number of consecutive SBEs can be obtained by
subtracting the number of DBEs from the number of uncorrectable
ECC memory errors.

We additionally computed system-wide MTBE and derived per-
node MTBE by normalizing the error count using the number of
GPU nodes in Delta. The per-node MTBE indicates the operational
hours a single Delta GPU node can function before encountering an
error. For GPU memory resilience characterization, we additionally
derived per-GPU MTBE by normalizing the error count using the
number of GPU in a node and per-GB MTBE by normalizing the
error count with per GPU memory capacity in GB. The per-GPU
MTBE reflects the operational hours a single GPU can function
before encountering an error.

Error Propagation Analysis.We performed error propagation
analysis (Figure 4, item (3)) to capture how errors propagate within
a GPU and across different GPUs while measuring the propagation
time. The propagation probability from GPU error 𝑒1 to 𝑒2 is de-
fined as 𝑃 (𝑒2 |𝑒1) = #𝑒2

Total #𝑒1 , 𝑡𝑒2 − 𝑡𝑒1 ≤ Δ𝑡 . A propagation path is
created if 𝑒2 occurs immediately after 𝑒1 within a predefined time
window Δ𝑡 . If there is no succeeding error 𝑒2 after 𝑒1 within Δ𝑡 ,
then 𝑒1 is a terminal error that does not propagate. For intra-GPU7

propagation, we require errors 𝑒1 and 𝑒2 to be on the same GPU de-
vice, whereas for the inter-GPU propagation, 𝑒1 and 𝑒2 are from two
distinct GPUs on the same node. We recorded the time difference
between the initial (𝑒1) and subsequent errors (𝑒2), referred to as the
propagation time, for each propagation event. A shorter propagation
time suggests a higher correlation between 𝑒1 and 𝑒2. We applied
the same Δ𝑡 selection criteria as the error coalescing analysis and
selected the Δ𝑡 = 5 seconds in error propagation analysis.

User Job Impact Analysis. The user job impact analysis step
(Figure 4, item (4)) associates GPU errors with failed user jobs
7GPU devices are identified by their node ID and PCI Express bus address.

to characterize the impact of GPU errors on user jobs. Section 5
provides detail on this analysis.

4 Characterizing GPU Resilience
This section characterizes and compares the resilience of Delta’s
NVIDIA A100 (Ampere) and H100 (Hopper) GPUs. Specifically, we
discuss error statistics and error propagation of GPU errors in three
categories: (i) GPU memory, (ii) GPU hardware, and (iii) NVLink
interconnect, as described in Section 2.3 and Table 1. These errors
are critical because they interrupt user jobs and lead to unplanned
node downtime, as we show in Section 5. We first highlight error
statistics and key findings from our analysis and then focus on
error propagation for each of the three error categories on Delta’s
workload. Note that we do not directly compare Delta with Blue
Waters[12], Titan[32], or Summit [38] as those systems used older
GPUs lacking latest performance and resilience features central
to our study, e.g., GSP, dynamic page offlining, row remapping,
memory error containment, and NVLink recovery.

4.1 Error Statistics and Result Highlights
Table 1 summarizes the selected critical GPU error statistics for
A100 GPUs and H100 GPUs during the operational period, includ-
ing error count, system-wide mean time between errors (MTBE)
and per-node MTBE. As described in Section 2.3, these selected
errors are critical XID errors that can lead to user job interruption
and node downtime, requiring manual SRE intervention for recov-
ery. In the operational period, a total of 14,821 critical errors (listed
in Table 1) were recorded for Delta’s A100 GPUs, with a system-
wide MTBE of 1.4 hours and node MTBE of 154 hours. Delta’s H100
GPUs encountered 1,821 GPU errors, with a system-wide MTBE of
1.9 hours and node MTBE of 292 hours, higher than A100 nodes.
Next, we use the results from Table 1 to assess the resilience charac-
teristics of GPU memory, GPU hardware, and NVLink interconnect
in greater detail.

GPU Memory. Recall that, each A100 GPU incorporates 40
GB of HBM2e memory, and each H100 GPU incorporates 96 GB
of HBM3 memory. H100’s shows 3.2× lower per GPU MTBE for
uncorrectable ECC memory errors compared to A100’s, despite
comparable per-GB MTBE. This reduced resilience likely stems
from H100’s higher memory density, which trades resilience for
capacity and performance. The observed lower per node MTBE of
RREs and higher RRF counts on H100 GPUs further suggest that
current resilience features are insufficient for increased memory
capacity. As a uncorrectable memory error can cause a multi-GPU
job to fail, enabling uninterrupted execution in such cases at scale
remains an open challenge. We present the detailed analysis below.

(i) Delta’s H100 GPUs exhibit lower memory resilience than the
A100 GPUs. Specifically, the per GPU MTBE is 3.2× lower on H100
GPUs at 88,768 hours versus 283,271 hours for A100 GPUs. Based on
the per GPU MTBE, we calculated the per GB MTBE to be 8,521,728
hours8 for H100’s HBM3 memory vs. 11,330,826 hours for A100’s
HBM2e memory, a 24% reduction.
8We calculated the per GB MTBE by multiplying the per node MTBE with the total
memory of all GPUs in GB for that node. For example, in a 4-way H100 GPU node
with 96 GB of memory, the per GB MTBE = 22, 192 × 96 × 4 = 8, 521, 728 hours.
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Table 1: Delta NVIDIA Ampere A100 and Hopper H100 (GPU of GH200 Superchip) GPU resilience statistics.

Event Abbr. Category Description Recovery Action Count MTBE (hrs)
Code A100 H100 System-wide Per Node

A100 H100 A100 H100

XID 31 MMU Error Hardware GPU memory management unit
(MMU) error.

MMU error due to invalid
memory access or

driver/hardware bugs.
8,863 1,737 2.4 2 257 307

XID 48 DBE Memory Double bit ECC memory error (DBE).
Triggers RRE; GPU reset or
node reboot is needed to

clear this error.
1 17 – 206 – 31,330

– Consecutive
SBEs Memory Consecutive single-bit ECC memory

errors (SBEs).

Triggers RRE; GPU reset or
node reboot is needed to

clear this error.
33 7 651 501 68,996 76,087

–
Uncorrectable
ECC memory

Errors
Memory Consecutive SBEs or a DBE.

Triggers RRE; GPU reset or
node reboot is needed to

clear this error.
34 24 632 146 66,967 22,192

XID 63 RRE Memory
Row remapping event triggered by
uncorrectable MBE: one DBE or two
SBEs at the same memory address.

GPU reset needed for row
remapping. 34 16 632 219 66,967 33,288

XID 64 RRF Memory Row remapping failure of a row
remapping event.

GPU reset is needed to
clear this error. 0 8 – 438 – 66,576

XID 74 NVLink
Error

Inter-
connect

NVLink error indicating connection
issues between GPUs via NVLink

interconnection.

GPU reset or SRE
intervention required. 1,922 – 11 – 1,185 –

XID 79
GPU Fallen
Off the Bus

Error
Hardware

GPU has fallen off the system bus and
is not reachable, typically because of

driver or hardware issues.

GPU reset or SRE
intervention required. 10 – 2,148 – 227,668 –

XID 94
Contained
Memory
Error

Memory Uncorrectable contained ECC error,
indicating successful containment. Not specified. 13 14 1,652 250 175,144 38,043

XID 95
Uncontained
Memory
Error

Memory Uncontained memory error, indicating
failure in containment.

GPU reset or SRE
intervention required. 11 19 1,953 184 206,989 28,032

XID
119/120 GSP Error Hardware NVIDIA GPU Systems Processor (GSP)

error.
GPU reset or SRE

intervention required. 3,857 3 6 1,168 590 177,536

XID
122/123

PMU SPI
Error Hardware PMU SPI read/write failure, indicating

failed communication with the PMU. Not specified. 77 – 279.0 – 29,570 –

*NVIDIA A100/H100 GPU supports page retirement and up to 512 row remappings (RRE); previous generations support only 64 page retirements (no row remapping support).
*Row remapping, contained memory error, and uncontained memory error are new resilience features introduced starting with the NVIDIA Ampere for managing uncorrectable memory errors.
*Per-node MTBE (hrs) is derived by multiplying system MTBE by the number of GPU nodes of that GPU type. The number of nodes and GPUs per node type are specified in Figure 2.
*All XID events presented, except for row remapping events, are errors. However, for simplicity, we treat all XID events as errors in this paper.
*Uncorrectable ECC and Consecutive SBEs are inferred from the corresponding recovery event RRE and RRF (see Section 3.2).

We attribute the decrease in resilience is primarily due to the
higher memory capacity (96 GB vs. 40 GB, a 2.4× increase), which
increases the chances of bit flips. We additionally hypothesize that
H100 memory resilience is worse due to (a) a lower signaling volt-
age that increases susceptibility to bit flips [58] and (b) an increased
number of stacks that make heat dissipation challenging and de-
grade the resilience of memory modules, of the HBM3 memory.

(ii) Uncorrectable ECC memory error-recovery mechanisms (e.g.,
row remapping and error containment, see Section 2.3) improve
GPU memory resilience and reduce service interruptions [37]. The
error recovery mechanisms mitigate uncorrectable memory errors
with a probability of 0.92 on H100 according to error propagation
analysis in Section 4.2. However, these mechanisms may not scale
well with the increase in GPU memory capacity in H100. For exam-
ple, the available spare rows for row remapping are capped at the
same 512 rows [37], which is not proportional to the 2.4× increase
in memory capacity. Such insufficiency can be evident from the sig-
nificantly lower per node MTBE of RRE on the H100 GPUs than the
A100 GPUs, indicating more frequent recovery events. In addition,
we observed 8 RRFs on H100 GPUs during the early operational
period, which indicates memory recovery failure due to exhaustion
of spared memory rows. We have yet to observe an RRF on the
A100 GPUs during the much longer operational period.

GPU Hardware and NVLink Interconnect. GPU hardware
such as GSP, PMU SPI, and NVLink are critical components from a
resilience perspective for A100 GPUs, leading to node downtime
and job failures. In this context, H100 GPUs demonstrate significant
improvements in GPU hardware resilience, especially in critical
components such as the GSP, PMU SPI, and NVLink. We believe
that these improvements are likely due to the tightly integrated
heterogeneous CPU-GPU architecture of GH200 [36] and driver-
level enhancements [34]. We present a detail analysis below.

(i) Among the GPU hardware components on A100 GPUs, GSP,
intended as a performance enhancement, is the most vulnerable due
to its lack of robust detection and recovery. Our error propagation
analysis (Section 4.2) shows that over 99% of GSP errors put the
GPU in an error state and lead to job failure if encountered. A GSP
error requires a GPU reset or a node reboot to recover, introducing
significant overheads. In addition, PMU SPI communication errors
propagate downstream and cause MMU errors with a probability
of 0.88, leading to MMU errors, which then, in turn, result in a job
failure over 90% of the time. Although PMU SPI communication
errors are high-impact errors, they are not highlighted in NVIDIA’s
developer’s manual [35].

(ii) Despite error detection mechanisms such as CRC and re-
covery mechanisms such as message retransmitting, NVLink GPU
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interconnect errors are frequent (1,922 total NVLink errors) on A100
GPUs, with a node MTBE of 1,185 hours (system-wide MTBE of 11
hours); 42% (801) of the NVLink errors affected two or more GPUs.
Although NVIDIA [35] indicates that a GPU reset or a node reboot
is required to clear NVLink, Delta SREs suggested that NVLink
errors were largely benign and did not always lead to job failures.
Indeed, the user job impact analysis shows that an NVLink error
has a 54% chance of leading to a job failure (see Section 5). When
an NVLink error is observed but does not affect a user job, it may
be because NVLink is primarily used for communication rather
than computation in many jobs or because multiple NVLink errors
within the same job have a consolidated impact, resulting in high
occurrence rates but minimal application disruption.

(iii) H100 GPUs have substantially improved GPU hardware re-
silience over A100 GPUs: only 3 GSP errors were observed during
the measurement period. Moreover, the number of GPU Fallen off
the bus errors, NVLink errors9, and PMU SPI errors were not ob-
served in H100 GPUs. We attribute this improvement to (a) the
better packaging and tight of CPU and GPU into a single hetero-
geneous compute module, which significantly reduces integration
errors and enhances the resilience of the CPU-GPU complex, and
(b) the NVIDIA driver upgrades appear to have improved GSP and
NVLink stability (also observed by the Delta SREs).

GPU Errors Temporal Analysis. Temporal analysis revealed
that GPU error rates followed the classic “bathtub” reliability curve.
In the pre-operational period, i.e., the “infant-mortality” phase,
Delta underwent extensive testing, hardware replacements, and
software fixes, during which the system-wide MTBE was 0.15
hours10. In the operational period, the system-wide MTBE rose
10× to 1.4 hours, marking a transition to the “normal-life phase”
with lowered error rate. Furthermore, estimation of the hazard-rate
(𝐻 (𝑡) =

∫
ℎ(𝑡) 𝑑𝑡 ) and cumulative hazard-rate using Nelson-Aalen

estimator showed that GPU hazard-rate varies over time but ex-
hibits no clear temporal trends during the operational period (e.g.,
hazard rate with mean 0.7, std 7.94 for A100 GPUs).

GPU Failure and Replacement. During the measurement pe-
riod (895 days) of A100 GPUs, four A100 GPUs were replaced due to
GPU’s failure to boot-up. In comparison, during the measurement
period (146 days) of the H100 GPUs, two GPUs were replaced due
to uncorrectable memory errors and row remapping failures. This
provides an additional support for the observed result that memory
is a resilience weak link on H100 GPUs, while the A100 GPUs are
more susceptible to errors from GPU hardware components.

4.2 GPU Error Propagation
This section describes results on both intra-GPU and inter-GPU error
propagation during the operational period forDelta’s A100 andH100
GPUs. Understanding GPU error propagation reveals resilience
weak links between GPU components. We break down the error-
recovery propagation into three categories for the GPU errors listed
in Table 1: (i) GPU memory, (ii) GPU hardware, and (iii) NVLink
interconnect, and estimate the propagation probabilities from GPU
error logs (see Section 3.2). The propagation paths in Figures 5 to 7
are highlighted with lightning signs that indicate the beginning of
9We tested the NVLink to ensure that the NVLinks were enabled.
10Evaluated using the critical-errors listed in Table 1.
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Figure 5: Intra-GPU uncorrectable memory error recovery
paths inH100GPUs. Numbers on the edges showpropagation
probability. The precise sub-second timing information is
not available in the H100 nodes’ system logs. All propagation
time for H100 GPUs memory errors were within one second.

each path. If two succeeding errors occur in close successions, i.e.,
a short propagation time, it suggests causality.

For GPU memory errors, we observed propagation primarily
on H100 GPUs, which coincides with our findings on worsened
memory resilience in Section 4.1. For GPU hardware and NVLink
interconnect errors, we observed error propagation paths primarily
on A100 GPUs because of the improved hardware resilience of H100
as discussed in Section 4.1.

4.2.1 GPUMemory-Error Propagation. Intra-GPU uncorrectable
memory error recovery paths are shown in Figure 5 for H100 GPUs
during the operational period. Memory error recovery path for
A100 GPUs were a subset shown in Figure 5. Hence, we only show
the memory propagation path for H100 GPUs.

Successful Error Recovery and Containment. As shown
in Figure 5, row remapping recovery (RRE) triggered by an un-
correctable ECC memory error has a success rate of 0.59 on H100
GPUs. For the 33% of the row remapping events that fail (RRF), the
GPU still contains the uncorrectable memory error because only
the affected user jobs were terminated, and only the faulty page was
offlined. Overall, considering both uncorrectable memory error re-
covery paths (RRE and error containment after an RRF), the impact
of uncorrectable memory errors was alleviated 92% of the time on
H100, while the GPU can remained operable. Such uninterrupted
operations were not achievable on previous-generation GPUs (e.g.,
Kepler in [12, 51] and Volta in [38]), as an uncorrectable memory
error would immediately cause user job interruption and put GPU
in an error state, necessitating a GPU reset to recover [35].

Unsuccessful Error Containment. The above uncorrectable
ECC memory error recovery or containment process can fail, re-
sulting in uncontained memory errors (Section 2.3). The error con-
tainment process failed 8% of the times on H100 GPUs during the
operational period (see Figure 5). Moreover, as informed by the
Delta SREs, uncontained memory errors can be highly bursty and
persistent and may spam the console logs, consuming useful com-
pute cycles and leaving the GPU inoperable. We did not observed
highly bursty and persistent uncontained memory error in A100 or
H100 GPUs during the operational period.

Overall, the propagation analysis suggests that the new memory
error recovery mechanisms on H100 GPUs alleviated impact of
uncorrectable memory errors 92% of the time. That said, Delta’s
H100 GPUs exhibited significantly more memory error recovery
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Figure 6: Intra-GPU hardware error propagation probabili-
ties in A100 GPUs. Numbers on the edges show propagation
probabilities and average propagation time in seconds.

propagations than A100 GPUs, highlighting the worsened mem-
ory resilience compared to A100s. In addition, the highly bursty
and persisting nature of uncontained memory errors can lead to
node/system operation disruptions, as we learned from Delta SREs.

4.2.2 GPU Hardware-Error Propagation. This section primar-
ily focuses on A100 because the H100 hardware (these components)
experienced almost no error during the operational period. Fig-
ure 6 shows error propagation across GPU hardware components
in A100 GPUs during the operational period. We found three domi-
nant GPU hardware error propagation paths, originating in (i) GSP
(GPU System Processor) errors, (ii) PMU (Performance Manage-
ment Unit) SPI errors, and (iii) GPU Fallen Off the Bus errors. We
omit hardware error propagation graphs for H100 GPUs as we only
observed three GSP errors and their propagation paths are similar
to that of the A100 GPUs.

GSP-related Errors. Error propagations that originate in GSP-
related errors are the most prominent among GPU hardware errors
(see Table 1) on A100 GPUs. A GSP error arises when the GSP
fails to respond to the remote procedure calls from the GPU driver.
Figure 6 shows that, with a probability of 0.99, GSP errors lead to
the recurrence of the same error or put the GPU in an inoperable
state. The remaining 0.01 (15 cases) of GSP errors caused PMU SPI
communication errors (see the follow-up description) that led to
user job failure, as depicted in Section 5. Our analysis addition-
ally shows that 99% of GSP errors appeared in isolation without a
preceding error.

GSP errors can be caused by either GSP firmware bugs [34] or
demanding workload. For example, Delta SREs observed that these
errors were highly correlated with heavy ML benchmarks, and
they suggested that GSP errors are high-impact errors whose recov-
ery requires manual node draining and reboots. Our propagation
analysis confirm that the GSP is a single point of failure on both
A100 GPUs in part because of their spontaneous nature and high
downstream impact (e.g., GPU hangs) on the GPU.

PMU SPI Errors. Communication errors with the performance
management unit (PMU) over the Serial Peripheral Interface (SPI),
known as PMU SPI errors, can cause performance management
issues (e.g., inability to change the core frequency). We observed
that such errors could lead to MMU errors with a probability of 0.88
(see Figure 6), ultimately leading to user job failures. The majority
of the rest of the PMU SPI errors resulted in another PMU SPI
error in close succession, leading to persisting error patterns. We
observed 77 occurrences of PMU SPI errors (see Table 1) with a 0.98
probability of leading to user job failures (see Table 2) on A100s.
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GPU Fallen Off the Bus. GPU Fallen Off the Bus errors were
logged when the GPU driver could not reach the GPU over the
system bus. This error is an integration error often caused by a
loose GPU-motherboard connection or contact failure because of
thermal cycles [51]. Over 99% of the errors of this type lead to
similar errors in close successions and eventually put the GPU into
an error state.

Our GPU hardware error propagation analysis suggests that the
error detection and recovery of GSP, PMU, and the communication
interfaces (e.g., PMU SPI) need to be improved via duplications
and error-detection and correction mechanisms to prevent single
points of failure, as evident in A100 GPUs. In fact, AWS recom-
mends disabling GSP for stability over performance benefits [4].
By improving GSP hardware and driver software combined with a
tightly integrating CPU-GPU architecture, the H100 GPUs in the
GH200 Superchips significantly improve GPU hardware resilience
over the A100 GPUs. Notably, apart from three GSP errors, which
follow the same propagation paths as GSP errors in A100 GPUs,
we observed no other hardware error propagation paths on H100
GPUs.

4.2.3 NVLink Interconnect-Error Propagation. NVLink is an
GPU-to-GPU interconnect for communication and data exchanges.
An NVLink error can impact a single or multiple GPUs on the
same node, possibly rendering the entire multi-GPU compute pool
unavailable (see Figure 7). We observed both kinds of propagation
in our error logs on A100 GPUs during the operational period on
A100 GPUs.

NVLink Inter- and Intra-GPU Propagation. An NVLink er-
ror occurs when one or more NVLinks experience an error. Our
analysis showed that of the 1,922 NVLink errors, 42% propagated to
connected GPUs; of those errors, 17% involved three or more GPUs
of the same compute node. The rest of the 1,121 NVLink errors
did not propagate across GPUs. NVLink errors, like GPU hardware
errors, happen in isolation without preceding errors. On the same
GPU device, an NVLink error either leads to another NVLink error
soon after (with a probability of 0.38) or potentially leaves the faulty
GPU in an error state (with a probability of 0.61).

Although Delta SREs reported that most NVLink errors were
benign, we found that the probability of leading to user job failure
when encountered is 54% (43 cases) during the operational period
on A100 GPUs. Moreover, in two incidents, GPU resets are needed
to recover from critical NVLink errors, leading to over 2 hours of
node interruption, and, as with GPU hardware errors, we found no
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Incident 1: GSP Error Caused User Job 

Failure on A100

[scheduler][slurmctld][2022-10-
11T06:59:19]
Job started in 'gpuA100x4' 
partition on gpua080. 

[JobId=976760]

[gpua080][kernel][2022-10-
11T08:23:52] Timeout waiting for 
RPC from GSP. [ErrorCode=XID 119]

[scheduler][slurmctld][2022-10-
11T08:23:52] Job completed with 
error. [JobId=976760, 

ExitStatus=1]

[scheduler][slurmctld][2022-10-
11T09:08:24] Node gpua080 state 

set to draining.
[scheduler][slurmctld][2022-10-
12T08:21:36] Node gpua080 
rebooted.

Incident 2: Contained Uncorrectable 

Error Caused User Job Failure on H100

[scheduler][slurmctld][2024-11-
11T07:41:33] Job started in 
‘ghx4' partition on gh083. 
[JobId=134883]

[gh083][kernel][2024-11-
11T20:23:22]
Contained ECC: SM (0x1). RST: No, 
D-RST: No [ErrorCode=XID 94]

[scheduler][slurmctld][2024-11-

11T20:23:29] Job completed with 
error. [JobId=134883, 
ExitStatus=1]

[gh083][slurmctld][2024-11-
11T20:23:55] clean shutdown with 
force=no halt=no reboot=yes

[scheduler][slurmctld][2024-11-

11T20:25:34] Node gh083 rebooted.

Error

Recovery

Error

Recovery

Figure 8: Incidents in which GPU errors led to job failure.

preceding hardware errors before NVLink errors, making them less
predictable than memory-related errors.

We did not observe NVLink-related errors on H100 GPUs during
the operational period despite observing related non-error NVLink
events (e.g., link initialization). We additionally conducted NVLink
tests on an Delta-AI node to confirm that NVLinks are enabled and
fully functional. We conjecture that the improvement is due to both
NVLink hardware and driver upgrades and potential changes in
NVLink error logging mechanisms.

4.3 Examples of Error Propagation to User Jobs
In this section, we show how measured errors relate to NVIDIA’s
measured DCGM GPU utilization metric, a step towards relating
GPU memory and hardware errors with their impact on the user
jobs. Figure 8 presents two example incidents.

Incident 1: A GSP error stalled GPU control functions and
rendered the GPU inoperable on an A100 GPU. Consequently, the
user job scheduled on that GPU failed. The GSP error required
the draining of the node and a full node reboot to recover, which
led to the draining of all pending user jobs on that node. From
the beginning of the node drain to the completion of the node
reboot, the total recovery time for this incident was 23 node hours
(09:08 AM to 08:21 AM the next day), during which the node was
unavailable. Figure 9a shows that the corresponding GPU utilization
dropped quickly following the error incident due to job failure. This
incident shows that a GPU error can significantly interrupt user
jobs and node availability.

Job Failed

GSP 
Occurred

(a) GSP Error

Job Failed
Uncorr. Mem 
Err Occurred

(b) Uncorr. Mem. Error

Figure 9: GPU utilization during GPU error incidents.

Incident 2: In this incident, the H100 GPU running the user
job experienced an uncorrectable ECC memory error, which led
to an error containment event. The error containment event con-
tains the uncorrectable memory error by terminating the user’s job.
Subsequently, a node reboot is triggered to recover from this error,
resulting in a two minute node downtime. Figure 9b shows that
GPU utilization dropped as the user job was terminated. This inci-
dent shows that although an uncorrectable memory error might be
contained, it still results in user job termination and requires node
reboot to fully recover, resulting in unexpected node downtime.

5 Propagation of Errors to Jobs
This section provides an in-depth analysis of job-level resilience
and associated GPU downtime.

A GPU error can lead to:
(i) Job Failure: A GPU error may not be handled by jobs, either

because the error itself is not contained or because there is a lack of
appropriate error-handling mechanisms. For example, GSP errors
lead to GPU failures and require node reboots. To recover from
GPU failures, jobs need to be re-executed from the beginning or
rolled back to the closest checkpoint.

(ii) GPU and Node Downtime: Downtime can occur when GPUs
need to be reset or replaced by the operator, and no jobs can be
scheduled on the GPU and the corresponding node in the interim.

5.1 Result Highlights
Table 2 show the overall impact of hardware errors on applications.
In summary, we observe that:

(i) Except for MMU and NVLink errors, no other GPU errors
are handled by jobs, thus resulting in their failure. Depending on
the GPU type, the underlying cause of job failures differs. In the
case of A100 GPUs, hardware errors predominantly lead to job
failures, whereas memory errors are the primary cause of H100
GPUs. Therefore, there is a need to improve the resilience of un-
derlying hardware to minimize such failures. While checkpointing
is an option, checkpointing routines have a high overhead of up to
40% [31, 55, 56], including management, storage, and restore.

(ii) The overall availability per-GPU node is ∼99.4% (correspond-
ing to 9 minutes downtime/day) and ∼99.3% (corresponding to 10
minutes downtime/day) for A100 and H100 GPUs respectively. This
level of unavailability suggests that even if the rest of the infrastruc-
ture is highly available, current GPUs may not provide sufficient
availability to meet the demands of critical applications that require
greater than 3 9’s of availability (downtime of 1.4 mins/day). In
addition, we used emulation to project the impact of this availabil-
ity distribution at increased scales (for both node scale and job
duration) and found that significant overprovisioning of 5% would
be necessary to handle associated failures (as explained in further
detail in Section 5.4).

5.2 Job Statistics
During the characterization period, 1,420,278 user jobs were sub-
mitted to GPU nodes with a success rate of 87%. About 74% of user
jobs ran on a single GPU; 24% ran on 2–4 GPUs; and only 2% of
jobs used five or more GPUs.
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(a) A100 (b) H100

Figure 10: Node unavailability time after GPU failures.

Because of a lack of specific information on whether jobs were
ML-related, we estimated the percentage of ML user jobs based
on job submission names and the system modules/libraries im-
ported11. For instance, user jobs with names containing model or
train were likely related to machine learning. We provide detailed
statistics on node hours used, durations for both job types, and
failure probabilities in Table 3. We find that across all job sizes, the
failure probability lies between 6–49%, indicating a lack of adequate
recovery mechanisms.

5.3 Job Failure Analysis
To understand job failure patterns, we first separated jobs into “Com-
pleted” and “GPU-Failed” depending on their completion status.
Based on that job categorization, we analyzed (i) the GPU errors
that were most likely lead to a job failure, and (ii) the potential
recovery strategies, such as checkpointing and exception handling.
Classifying Job Runs: We classified jobs based on their exit status
and proximity of job failure time to GPU error occurrence time. The
job exit status was obtained from the Slurm job scheduler logs (as
described in Section 3.1). We marked a job as “GPU-Failed” if a GPU
error occurred within a 20-second interval before job failure.12
Correlating GPU Errors and Job Failures: We broke down all GPU-
Failed jobs by the specific GPU errors that were most likely to lead
to job failures. Table 2 provides probabilities of user job failures per
GPU error for the A100 and H100 GPUs. As any of the encountered
errors may have contributed to a job failure, we consider all GPU
errors that occurred within the 20-second interval to be responsible
for the failure.
11Due to privacy restrictions, we could not access the job scripts for use in job
classification.
12Note that we do not count “zombie” jobs, i.e. jobs that have failed but not terminated
by the Slurm scheduler in the analysis.

XID GPU
Error

# GPU-failed
Jobs

# Jobs
Encountering
Given XID

Job Failure
Probability (%)

A100 H100 A100 H100 A100 H100

31 MMU err. 3206 93 3543 126 90.48 73.80
74 NVL err. 43 0 80 0 53.75 –
122 SPI PMU RPC failure 40 0 41 0 97.56 –
119 GSP RPC timeout 31 0 31 0 100.00 –
94 Contained ECC 5 5 5 5 100.00 100.00
48 GPU DBE 0 5 0 5 – 100.00
64 Row remapping failed 0 3 0 3 – 100.00
63 Row remapping event 0 2 0 2 – 100.00

Table 2: Distribution of GPU-failed jobs across the different GPU error types
for A100 and H100 GPUs. The failure probability is calculated as (# GPU-failed
jobs encountering that GPU error) / (# jobs encountering that GPU error). The
total number of GPU-failed jobs was 3,359 during the 895-day characterization
period.

GPU Count (%) Elapsed Time (Minutes) Failed (%) GPU Hours (k)

Count Mean P99 ML Non-ML

1 1,052,993 (74.140%) 134.560 2859.677 129,395 (12.29%) 641.9 1,949.14
2-4 337,637 (23.773%) 159.839 2880.117 40,610 (12.03%) 810.4 2,749.00
5-8 13,907 (0.979%) 231.927 2880.316 4,469 (32.13%) 253.1 290.16
9-32 13,378 (0.942%) 221.636 2880.167 3,045 (22.76%) 307.5 844.40
33-64 1,375 (0.097%) 145.206 2880.017 608 (44.22%) 108.2 149.24
65-128 856 (0.060%) 320.185 2834.413 421 (49.18%) 15.1 442.70
129-256 110 (0.008%) 174.713 2041.312 7 (6.36%) 0.0 57.23
257+ 22 (0.002%) 29.128 107.493 5 (22.73%) 0.0 3.44

Table 3: Job distribution, elapsed time statistics (mean, P99), failure count
with percentage, and GPU hours divided into ML and non-ML categories for
various A100 and H100 GPU configurations.

Overall, other than NVLink and MMU errors, all GPU errors,
such as GSP RPC timeout and PMU failures, propagate (as discussed
in Section 4.2) and cause job failures. Based on previous analysis,
we note that hardware errors – such as GSP and PMU errors are
dominant in A100 GPUs, whereas memory errors are dominant in
H100 GPUs.

NVLink and MMU errors do not necessarily lead to job failures
because: (1) For NVLink errors, the link or GPU may not be in use
by any user jobs (as discussed in Section 4.2)13; and (2) ForMMU er-
rors, there can be application or library-level masking mechanisms.
Besides hardware errors, MMU errors can also occur if buggy user
code makes illegal memory accesses that cannot be mapped in
the virtual-to-physical address space. Such errors can be managed
using appropriate application-level exception handlers. Popular li-
braries and frameworks for machine learning [42–44] have support
for handling such exceptions by skipping the associated training
iteration, albeit at the cost of model quality.

5.4 Impact of GPU Downtime on Jobs
While significant node hours might be lost because of wasted com-
pute time from failed jobs, additional node hours are also lost be-
cause of the time required to recover the impacted GPU node by
either resetting it or replacing it entirely. To reset the GPU node,
operators typically drain the node, i.e., wait for other jobs running
on the node to complete without accepting new jobs and then re-
boot. After the reboot, if the node successfully passes the health
check, the node reset is successful, and new jobs can be scheduled
on the GPU node. If the reset is unsuccessful, the node is marked
failed until the GPU is additionally tested and physically replaced, if
required. To calculate the average system downtime, we estimated
the total time when the GPU was unavailable, which primarily in-
cluded the drain and reboot time. Figure 10 shows the distribution
of the unavailable time across the entire characterization duration.
Overall, we found that the expected time to service the failed node
was 0.88 hours for A100 GPUs and 2.2 hours for H100 GPUs. A total
of 5,700 node hours were lost to GPU downtime. Using the node
downtime and failure distributions, we can estimate the availability
of the GPU node as 𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
equal to 99.4% and 99.3% for A100

and H100 GPUs respectively 14.
Projected impact of availability on long-running and large-scale jobs:
We provide error and recovery statistics in previous sections; we
13Based on our understanding, NVLink and memory errors can occur even when no
workload is running [16].
14The node MTTF number is estimated from the GPU’s MTBE, for which we conser-
vatively assume that all critical GPU errors lead to node interruption.

1154



Story of Two GPUs: Characterizing the Resilience of Hopper H100 and Ampere A100 GPUs SC ’25, November 16–21, 2025, St Louis, MO, USA

also attempted to project how those distributions would affect jobs
running on a different system. To do so, we built a simulation tool
driven by our analysis. The parameters of the simulation tool can
be varied based on the scenario under consideration.

Specifically, we simulate the case in which jobs (such as ML
training) use the entire set of 608 H100 GPUs and run for a du-
ration of 1 month. These jobs require all GPUs to be operational
to make progress, and frequent node failures can lead to resource
unavailability and slower job progress. When such failures occur,
additional provisioning of GPU resources is necessary to allow the
job to resume on alternate nodes while the failed nodes recover.

The simulation uses a discrete time event simulation with node
failure probabilities derived from our prior analysis. The recovery
time after a failure is dependent on variables such as checkpoint load
time and availability of spare GPUs. To account for the variability
introduced by these factors, we parameterize recovery time and
perform a parameter sweep. For a training job with 608 GPUs and
recovery time of 2.2 hours, the required overprovisioning is 5%: i.e.,
31 additional GPUs are needed beyond the original 608 to maintain
availability of 99.9% at the job level. While at first glance, such
overprovisioning would appear to be a small cost, for the above
example, it would cost over $1 million per month for a 1000 node
cluster (our analysis is based on AWS H100 GPU rental rates [10]).
However, if the recovery time is reduced to 5 minutes, downtime
decreases significantly, and the required overprovisioning drops to
2%, a 2.5× reduction. This highlights the criticality of minimizing
recovery time to reduce downtime for large and long-running jobs.

In summary, every GPU node in the system has “two nines” of
availability. While such availability does not significantly impact
small jobs that use recovery mechanisms, large jobs can face signifi-
cant downtime. Significant overprovisioning of up to 5% is required
to eliminate such downtime.

6 Discussion
Justification of Analyzing Errors. Data-driven HPC resilience
characterization studies analyze operational data on system/appli-
cation errors to provide insights into system resilience [11, 12, 18,
19, 32, 33, 38, 39, 51, 52]. While in those studies, the error rate is
used as the key metric to quantify resilience, some [5, 50] argue
that fault rate is a more appropriate metric. Errors represent the
manifestation of faults and have direct downstream consequences,
such as triggering of recovery mechanisms, application interrup-
tions, or system-wide outages (SWOs). While a fault may result in
multiple errors, it is the resulting errors that the recovery mecha-
nisms must address to maintain system health. These errors and
their recovery process directly impact system health, performance,
and availability. Thus, SREs prioritize errors over faults. Hence, like
many others who study operational data, we chose to study errors.

Reliability of Logging. A potential source of error is logging
inconsistency from (i) missing logs due to storage failures, (ii) node
lockups where the NVIDIA driver fails to log the error prior to
the failure, and (iii) incorrect job-status captured by Slurm. How-
ever, these issues negligibly affected our analysis because: (1) Delta
minimizes storage failure impact by streaming logs in real time to
centralized storage; (2) SRE records show only 27 A100 and nine
H100 node lockups–0.18% and 0.49% of total GPU errors–making

their impact negligible; and (3) while eliminating false-negative job
status is challenging, GPU errors studied led to job failure almost
100% of times (Table 2), indicating failure statuses were reliably
captured by Slurm and false-negatives minimally impacted our
findings.

7 Related Work
Existing work has analyzed GPU resilience at the microarchitecture,
cluster, and application levels. This paper extends existing work via
comprehensive analyses of GPU error characteristics, propagation,
and impact on user jobs.

Microarchitecture-level GPU Resilience. Previous research [21, 46,
54, 59] has primarily focused on the resilience of individual GPUs at
the microarchitecture and software levels, e.g., for older generations
such as the NVIDIA G80 [7]. However, the earlier work did not
evaluate the resiliency of modern GPUs in large-scale HPC settings.

System-level GPU Resilience in HPC Settings. Existing studies have
analyzed the resilience of GPUs in HPC systems [8, 11, 17, 20, 25],
for example, the NVIDIA Tesla K20X GPUs in various supercomput-
ers [12, 18, 19, 32, 33, 39, 51, 52]. Studies of the Blue Waters, Titan,
and Summit supercomputers [12, 25, 32, 33, 38] have examined node
failures and GPU error characteristics. However, such work either
studied previous generations of GPUs with a focus on GPUmemory
or on cluster-level resilience instead of GPU resilience. Our work
complements those by providing resilience insights into the latest
generation of GPUs, focusing on a broader range of components.

Application-level GPU Resilience in Data-centers and Deep Learn-
ing Workloads. Recent research has focused on understanding GPU
power usage [33], GPU component-level failures [24], software-
level error handling [15, 29, 30], and the impact of GPU software er-
ror propagation on GPGPU applications [3, 27, 45, 57] and emerging
GPU workloads such as convolutional neural networks (CNNs) [9,
13], large language models (LLMs) [14, 23], and privacy/safety-
critical applications [28, 40, 47].

8 Conclusion
This paper describes the results of a resilience study of Delta, which
consists of 1,056 NVIDIA A100 and H100 GPUs. The study used
up to 2.5 years of operational data on GPU errors collected across
those GPUs. We assessed the resilience of GPU components, er-
ror propagation paths, and impact on jobs and compared the two
generations of GPUs. In future work, we will extend the analysis
presented to other accelerators and larger-scale systems, running
more complex HPC and ML workloads.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

All artifacts and instructions can be found in the following link on
Zenodo: https://doi.org/10.5281/zenodo.15287639. To simplify
the evaluation of artifacts, we provide pre-processed intermediate
output as pickle files and instructions to reproduce the results for
the listed artifacts in the README. Please see the README in
the Zenodo repository for detailed and efficient evaluation
instructions.

A Overview of Contributions and Artifacts
A.1 Paper’s Main Contributions
By studying the GPU resilience of Delta15, our work contributes
to the following areas: (i) compares GPU memory and hardware
resilience via error statistics analysis of H100 and A100 GPUs;
(ii) characterizes intra- and inter-GPU error propagation graphs
for GPU memory, hardware, and NVLink error categories, and
presents real-world user job failure examples; and (iii) analyzes GPU
error impacts on user job success rate and node availability, and
project overprovisioning costs for large-scale, critical workloads,
via emulation.

For the GPU memory and hardware resilience comparisons, our
contributions are as follows:

C1 H100 GPU memory resilience is worse than that of A100
GPU memory in terms of both per-GPU mean time between
errors (MTBE) and per-node MTBE. Specifically, H100 shows
3.2× lower per-GPU MTBE and 24% lower per-GB MTBE
compared to A100 for uncorrectable ECC memory errors.

C2 Although H100’s memory error-recovery mechanisms miti-
gated (e.g., by memory row remapping) 92% of uncorrectable
ECC memory errors, they were insufficient to handle the
increase in memory capacity and the corresponding increase
in row remapping events on the H100 GPUs, as evident by
row-remapping failures.

C3 H100 GPUs demonstrated significantly improved hardware
resilience over A100 GPUs with respect to critical compo-
nents such as GSP, NVLink, and PMU SPI, which were major
sources of job failures on A100 GPU nodes.

For A100 and H100 GPU error propagation path characterization,
our contributions are as follows:

C4 We generated detailed error propagation graphs for critical
GPU errors in (i) GPU memory, (ii) GPU hardware, and (iii)
the NVLink category (Figures 5-7). The error propagation
analysis showed that while the H100 GPUs’ error propa-
gation paths were GPU memory error-related, A100 GPUs’
error propagation paths were predominantly GPU hardware
error-related.

C5 Our analysis showed that GPU hardware error-related prop-
agations on A100 GPUs were a single point of failure as they
appeared in isolation from other errors and were harder to
predict.

15Delta is an HPC system operated by the National Center for Supercomputing Appli-
cations (NCSA) at the University of Illinois Urbana-Champaign.

C6 We present three incidents of GPU error-caused user job
failures in Figures 1 and 8. For the two incidents presented
in Figure 8, we additionally included the corresponding GPU
utilization during those job failures.

We also make the following contributions to characterizing the
impact of GPU errors on user job success rate, node availability,
and overprovisioning costs:

C7 GPU errors on both A100 and H100 GPUs frequently re-
sulted in job failures due to the lack of robust recovery mech-
anisms at the application level. Except for MMU and NVLink
errors, GPU errors cannot be handled by application-level
mechanisms, resulting in a close to 100% job failure rate.
The underlying causes of job failures differ by GPU type:
hardware errors were the predominant cause in A100 GPUs,
whereas memory errors were the primary cause in H100
GPUs.

C8 The overall availability per GPU node was approximately
99.4% for A100 GPUs and 99.3% for H100 GPUs, correspond-
ing to a downtime of 9–10 minutes per day.

C9 To maintain 99.9% availability at the job level, overprovi-
sioning of 5% would be necessary, introducing significant
cost overheads of $1 million per month. If GPU node avail-
ability were improved to 99.9%, the required overprovision-
ing would be reduced by 2.5×, significantly reducing the
overprovisioning costs.

A.2 Computational Artifacts
The computational artifacts of this work can be accessed via [link].
These artifacts constitute a data pipeline that consumes system
and user job-related monitoring data and outputs the statistical,
propagation, and application-impact analysis outlined in Section 3
of the paper.

The input to our data pipeline is outlined in Section 2 of the paper;
it consists of Linux system logs, Slurm scheduling entries, DCGM
time series, and user job submission information. Since those input
data contain sensitive system and user information, such as user
identifiers, email addresses, project names, private IPs, and system
identifiers, we do not have permission from the system admins to
make them public. We are actively working with the system admins
on sanitizing and anonymizing the input data; we plan to provide
the input data and detailed instructions for executing our data
pipeline for artifact evaluation upon paper acceptance. Note that
our data pipeline is generalizable to other systems with minimal
adaptation effort, since NVIDIA XID errors are standard GPU errors
and are likely to follow the same format across different systems.
The following is a list of computational artifacts used in this work
with DOI: https://doi.org/10.5281/zenodo.15287639 on Zenodo:

A1 SystemLogAnalysisPipeline.py [link]
A2 JobDetailCollect.sh [link]

ApplicationStatsPipeline.ipynb [link]
A3 DCGMUtilizationAnalysis.py [link]
A4 OverprovisioningEmulation.py [link]

The above artifacts were executed on input data obtained from
Delta covering 2.5 years of operation, including 11.7M total GPU
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hours across the 1,056 A100 and H100 GPUs. Because of the size
of our data, the end-to-end execution time of the artifacts is ap-
proximately 675 minutes on a 28-core machine. Note that every
one of the above artifacts produced multiple data points, which
helped us produce multiple table entries, figures, and graphs, which
collectively constitute our findings, as shown in the following table.
We will now explain in detail each artifact’s relationship to our
contribution.

Artifact ID Contributions Related
Supported Paper Elements

𝐴1 𝐶1,𝐶2,𝐶3,𝐶4,𝐶5 Table 1
Figures 5-7

𝐴1, 𝐴2, 𝐴3 𝐶6 Figures 1, 8, and 9

𝐴1, 𝐴2 𝐶7,𝐶8 Tables 2 and 3
Figure 10

𝐴1, 𝐴2, 𝐴4, 𝐶9

B Artifact Identification
B.1 Computational Artifact 𝐴1

Relation To Contributions
Artifact 𝐴1 (SystemLogAnalysisPipeline.py) implements the
data processing pipeline for Delta system logs over the 2.5-year
measurement period and provides the following functionalities: (i)
system log preprocessing, including XID error regexmatching, error
keyword matching, and error coalescing; (ii) GPU error aggrega-
tion and statistics analysis; and (iii) error propagation path analysis.
These functionalities together provide foundations for MTBE calcu-
lations and error propagation path constructions, which we used to
generate contributions 𝐶1,𝐶2,𝐶3,𝐶4, 𝐶5, and partly for 𝐶6 and 𝐶9.

Expected Results
The expected results of this artifact are (i) Pickle16 files containing
the regex-matched XID errors that occurred each day during the
measurement period, before primary error keyword matching and
coalescing (without de-duplication); (ii) Pickle files after the key-
word matching and error coalescing processes (de-duplication), per
day; (iii) an aggregated Pickle file containing error count statistics
for each XID event during the entire measurement period, obtained
by aggregating per-day pickle files; (iv) Pickle files for intra-GPU
error propagation analysis in the form of a list of source and re-
sulting errors pairs, with propagation time recorded; and (v) Pickle
files for inter-GPU error propagation for NVLink errors. All these
items were generated for both H100 GPUs and A100 GPUs across
their corresponding measurement periods.

Expected Reproduction Time (in Minutes)
The expected computation time for 𝐴1 on the 2.5 years of measure-
ment data is 600 minutes on a 28-core machine consisting of 2 Intel
E5-2660v4 CPUs and 128 GB of system RAM.
16Pickle files are generated by the Python Pickle Package.

Artifact Setup (incl. Inputs)
Hardware. The hardware requirements are identical across all ar-
tifacts and are as follows: memory, 128 GB; CPU, 2×14-core Intel
Xeon E5-2660 v4 CPU.

Software. The software environment is identical across all artifacts
and is as follows:

• System: Red Hat Enterprise Linux 9.5 (Plow)
• Python Interpreter: Python 3.12
• Python Packages used:
– tqdm
– google-re2
– pandas
– matplotlib
– hyperscan
– jupyter
– numpy
• We also used the following Python standard packages:
– subprocess
– multiprocessing
– itertools
– pickle
– statistics
– sys
– os
– datetime
– math
– collections

Datasets / Inputs. The inputs to𝐴1 are the per-day system logs com-
pressed in *.gz format. Artifact 𝐴1 will automatically decompress
and process all available log files in a user-specified time range and
data path.

Installation and Deployment. Upon installation of all the required
Python packages, the script can be run using the following example
commands:

python3 SystemLogAnalysisPipeline pkl 2022 2026 1 13 1 32 \
&& python3 SystemLogAnalysisPipeline match_keyword "" \
&& python3 SystemLogAnalysisPipeline dedupe "" 5 \
&& python3 SystemLogAnalysisPipeline agg_specific -1 gpu "deduped_5s

"

python3 split_to_diff_gpus_artifact.py \
&& python3 SystemLogAnalysisPipeline

cond_prob_forward_diff_pci_timediff 2022 2026 1 13 1 32
same_dev_id_same_node True _deduped_5s 5 \

&& python3 SystemLogAnalysisPipeline
cond_prob_forward_diff_pci_timediff 2022 2026 1 13 1 32
same_node_diff_dev_id True _deduped_5s 5 \

&& python3 SystemLogAnalysisPipeline agg_cond_prob_pci_timediff -1
forward same_dev_id_same_node True _deduped_5s 5 \

&& python3 SystemLogAnalysisPipeline agg_cond_prob_pci_timediff -1
forward same_node_diff_dev_id True _deduped_5s 5

This set of commands performs data preprocessing, generates error
statistics for the H100 and A100 GPUs separately, and then gener-
ates the propagation analysis. Detailed instructions and supported
arguments will be released with the Artifact Evaluation Appendix.
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Artifact Execution
The artifact consists of four major tasks:𝑇1,𝑇2,𝑇3, and𝑇4.𝑇1 decom-
presses the gz compressed raw system log files per day, performs
regex matching for extracting XID-related error logs, and generates
Expected Result item (i) for each day.𝑇2 uses the output from𝑇1 and
further performs XID error keyword matching and error coalescing
to remove duplicated error logs that originated in the same error;
the error-coalescing window Δ𝑡 is set to 5 seconds. A detailed justi-
fication of Δ𝑡 = 5 is in the paper’s methodology section (Section
3.2). The result of 𝑇2 is item (ii) in the Expected Results section.
𝑇3 aggregates the per-day processed errors into a single error list,
separated by GPU types (A100 vs. H100). Then𝑇4 uses the outcome
of 𝑇3 to generate intra- and inter-GPU propagation analysis by im-
plementing the error propagation analysis algorithm discussed in
methodology section (Section 3.2). Note that the error propagation
window cut-off Δ𝑡 is set to 5 seconds; a detailed justification is
presented in the paper.

Artifact Analysis (incl. Outputs)
The count statistics generated from item (iii) of the Expected Results
for the GPU error types are expected to match the counts in Table
1, and the corresponding system-wide and per-node MTBEs are
then computed by the method specified in the paper’s methodol-
ogy section (Section 3.2). Moreover, items (iv) and (v) generate the
propagation figures (Figures 5-7) for GPU memory, GPU hardware,
and NVLink errors. The error propagation probability and propa-
gation time are extracted by aggregating all errors of the same XID
and should match those presented in the error propagation figures.
Because of noise in error propagation analysis, we omit the edges
for which the propagation probability is less than 1%.

B.2 Computational Artifact 𝐴2

Relation To Contributions
Artifact 𝐴2 consists of the script (JobDetailCollect.sh), which
uses sacct to collect job metadata, including user information,
resource usage, runtime behavior, job completion status, and the
pipeline (ApplicationStatsPipeline.ipynb), which is used for
analyzing the impact of GPU errors on job resilience during the 2.5-
year characterization period. 𝐴2 provides the following functionali-
ties: (i) job data collection using sacct; (ii) job failure classification
based on correlation with GPU error events; (iii) job distribution
across GPU counts, runtime statistics, GPU-hour breakdown by
ML and non-ML, and failure analysis; and (iv) GPU unavailability
estimation from drain and recovery durations. These functionali-
ties enable a comprehensive understanding of how GPU reliability
impacts job resilience, resource usage, and system availability and
are used for contributions 𝐶6,𝐶7,𝐶8, and partly 𝐶9 .

Expected Results
The expected results of this artifact are (i) files containing job meta-
data collected using sacct that capture job resource usage, runtime
characteristics, and execution state; (ii) files containing classified
job records as GPU-failed or completed based on temporal corre-
lation with GPU error logs; (iii) a table summarizing job statistics

including GPU count, runtime (mean and P99), failure rates, and esti-
mated GPU-hours for ML and non-ML workloads; and (iv) separate
visualizations for A100 and H100 GPUs showing the distribution of
node draining and recovery times.

Expected Reproduction Time (in Minutes)
The expected reproduction time of this artifact is approximately 75
minutes on the hardware stated for 𝐴1.

Artifact Setup (incl. Inputs)
Hardware. Same as listed for 𝐴1.

Software. Same as listed for 𝐴1.

Datasets / Inputs. The input to this artifact consists of (i) job meta-
data files collected using sacct, stored in TXT (text file) format;
and (ii) GPU error logs recorded over the characterization period.
All files are preprocessed and analyzed within the ipynb notebook
based on a user-specified data directory and date range.

Installation and Deployment. Upon installation of all required
Python packages, the Jupyter Notebook can be executed in any
Python 3.8+ environment.

Artifact Execution
The artifact consists of four major tasks: 𝑇1,𝑇2,𝑇3, and 𝑇4. 𝑇1 col-
lects job-level metadata using sacct from theDelta Slurm scheduler
database and stores job records, including runtime, resource alloca-
tion, and execution status, to text files. 𝑇2 uses the output from 𝑇1
along with error classifications from 𝐴1 to identify GPU-induced
job failures based on temporal correlation with GPU error events,
as outlined in the paper’s methodology section (Section 3.2). This
analysis generates the job failure statistics reported in Table 2. 𝑇3
processes the output of 𝑇1 to extract aggregate job statistics, such
as GPU count, runtime characteristics (mean and P99), job failure
rates, and GPU hours by ML and non-ML jobs. These results corre-
spond to Table 3 in the paper. 𝑇4 combines the output from 𝑇1 and
𝑇2 to estimate node recovery time after GPU failures, generating
the data illustrated in Figure 10. In addition, we derive the per-node
availability using both the GPU error and failure statistics gener-
ated by𝐴1 and the node recovery time after GPU failures estimated
by 𝐴2.

Artifact Analysis (incl. Outputs)
The classified job failure records generated by 𝑇2 are expected to
match the GPU error-induced failure statistics shown in Table 2.
The aggregate job metrics computed in 𝑇3 should match the job
usage breakdowns and failure distributions in Table 3. The node
unavailability times derived in𝑇4 should reproduce the distributions
shown in Figure 10 for both A100 and H100 GPUs.

B.3 Computational Artifact 𝐴3

Relation To Contributions
𝐴3 contains a Python script (DCGMUtilizationAnalysis.py) that
reads the utilization data between the start date and the end date
from the Delta DCGM database and visualizes the utilization of
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four GPUs in the same node before and after a job failure occurs.
These visualizations are used to construct the contribution 𝐶6.

Expected Results
The expected result of this artifact is a figure visualizing the utiliza-
tion changes in four GPUs within a specific node 10 minutes before
and after a job running on either of those GPUs encounters a failure.
The x-axis is the time elapsed starting from 10 minutes before the
failure occurs until 10 minutes after the failure, and the y-axis is
the GPU utilization from 0% to 100%. This figure is expected to be
the same as Figure 9.

Expected Reproduction Time (in Minutes)
The expected computation time for the artifact is less than a minute.

Artifact Setup (incl. Inputs)
Hardware. Same as listed for 𝐴1.

Software. Python 3.12.7, and compatible matplotlib, numpy, pandas.

Datasets / Inputs. The input to this artifact is the per-day DCGM
data collected and stored in .csv format.

Artifact Execution
The artifact consists of a single task𝑇1.𝑇1 reads the utilization data
from the DCGM data and visualizes the utilization of four GPUs in
a targeted node. The output of 𝑇1 is a figure similar to Figure 9.

Artifact Analysis (incl. Outputs)
The output data generated from this artifact should match Figure 9
and contribution 𝐶6.

B.4 Computational Artifact 𝐴4

Relation To Contributions
𝐴4 contains a Python script (OverprovisioningEmulation.py) to
emulate job availability based on GPU availability, cluster size, and
overprovisioning. GPU failures are emulated in discrete time steps
with a random number generator. These failures are translated into
job availability values after accounting for the ability to handle
failures based on overprovisioning. Additionally, a binary search
estimates the minimal overprovisioning required to satisfy the job
availability target.

Expected Results
Minimum required overprovisioning values are outputted based on
the input availability, job size, failure, and recovery distributions.

Expected Reproduction Time (in Minutes)
Artifact Setup (incl. Inputs)
Hardware. Same as listed for 𝐴1.

Software. Python 3.12.7

Datasets / Inputs. Failure and recovery distributions from 𝐴1

Installation and Deployment. The artifact can be executed as a
Python script with constants defined in the header.

Artifact Execution
The artifact has two major tasks:𝑇1 and𝑇2.𝑇1 emulates GPU down-
time via a random sample process given the GPU error statistics
generated from 𝐴1 and generates a time distribution of GPU node
unavailability. 𝑇2 then uses this distribution and the specified job
availability target to compute the overprovisioning requirement,
contributing to 𝐶9

Artifact Analysis (incl. Outputs)
The output generated from the artifact will match the overprovi-
sioning numbers mentioned in Section 5 of the paper.

Artifact Evaluation (AE)
All artifacts and instructions can be found in the following link on

Zenodo: https://doi.org/10.5281/zenodo.15287639. To simplify
the evaluation of artifacts, we provide pre-processed intermediate
output as pickle files and instructions to reproduce the results
for the listed artifacts in the README. The following sections
provide additional guidance for adapting the analysis pipeline to
new systems or for starting from raw system logs. Please see the
README in the Zenodo repository for detailed and efficient
evaluation instructions.

C.1 Computational Artifact 𝐴1

Artifact Setup (incl. Inputs)
Artifact 𝐴1 (SystemLogAnalysisPipeline.py) processes raw system
log files (hereafter referred to as "raw system logs") and generates
a list of artifacts (see Section B.1) that are essential for downstream
GPU resilience analysis.

To set up the runtime environment for Artifact 𝐴1 to analysis
raw system logs, follow these steps:

(1) Provision a machine with hardware specifications compara-
ble to or exceeding those listed in AD Section B.1 for pro-
cessing logs at large-scale.

(2) Install Python version 3.12 or later on a system running
either Red Hat Enterprise Linux 9.5 or Ubuntu 20.04.

(3) Install the required Python packages using pip3 or conda
(e.g., pip3 install <packagename>==<version>).
• Python packages required:
– tqdm
– google-re2
– pandas
– matplotlib
– hyperscan
– jupyter
– numpy

The inputs to Artifact 𝐴1 are as follows:
(1) A regular expression file, regex_with_new_gpu.tsv (pro-

vided), used to match and parse XID-related log lines, and
to filter out non-XID entries.

(2) A directory containing the raw system log files. Each log
file path must follow a directory structure of the form
<basedir>/yyyy/yyyymmdd. For example, the log file for
March 15, 2023, should be located at
<basedir>/2023/20230315.
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Each log line consists of the following space separated fields:

timestamps hostname process_info log_message

An example log line is shown below:

2024-08-23T01:21:09.212665-05:00 host1 kernel: NVRM: Xid (PCI
:0000:01:00): 48, pid='<unknown>',name=<unknown>, An
uncorrectable double bit error (DBE) has been detected on GPU
in the framebuffer at physAddr 0x000000000 partition 0,
subpartition 0.

Since Artifact 𝐴1 is designed to process system log files from any
HPC environment that conforms to the specified directory structure
and log format, we encourage the broader community to adapt and
apply 𝐴1 to their own systems.

Artifact Execution
To execute Artifact 𝐴1, set REGEX_FILE_PATH to the full path of
the regex_with_new_gpu.tsv file, and ATLAS_LOG_FOLDER_PATH
to the directory (basedir) containing the raw system logs. Then,
run the following commands:

python3 SystemLogAnalysisPipeline pkl 2022 2026 1 13 1 32

python3 SystemLogAnalysisPipeline match_keyword ""

python3 SystemLogAnalysisPipeline dedupe "" 5

python3 SystemLogAnalysisPipeline agg_specific -1 gpu "deduped_5s"

python3 split_to_diff_gpus_artifact.py

python3 SystemLogAnalysisPipeline \
cond_prob_forward_diff_pci_timediff 2022 2026 1 13 1 32 \
same_dev_id_same_node True _deduped_5s 5

python3 SystemLogAnalysisPipeline \
cond_prob_forward_diff_pci_timediff 2022 2026 1 13 1 32 \
same_node_diff_dev_id True _deduped_5s 5

python3 SystemLogAnalysisPipeline agg_cond_prob_pci_timediff -1 \
forward same_dev_id_same_node True _deduped_5s 5

python3 SystemLogAnalysisPipeline agg_cond_prob_pci_timediff -1 \
forward same_node_diff_dev_id True _deduped_5s 5

The above commands correspond to the following analysis pro-
cedure:

(1) Extract XID error logs from raw system logs by filtering
and matching each log line using the provided XID regular
expressions. This step generates intermediate pickle files.
The six numerical inputs represent start_year, end_year,
start_month, end_month, start_day, and end_day, respec-
tively. For example, the provided command processes logs
from January 1, 2022, to December 31, 2025.

(2) Identify the primary XID error log for each XID error event
using keyword matching. Some XID errors generate a sin-
gle primary log entry accompanied by multiple secondary
entries, which provide additional context such as memory
addresses or channel identifiers.

(3) De-duplicate the extracted XID error logs through error coa-
lescing, using a 5-second coalescing window.

(4) Aggregate all daily pickle files into a single, unified pickle
file for downstream analysis.

(5) Partition the aggregated pickle file into separate folders
based on GPU model, using the GPU-node identifier (e.g.,
gpua for A100 nodes and gh for GH200 nodes).

(6) Compute intra-GPU error propagation probabilities and
propagation times, using a maximum propagation window
of 5 seconds, per each day.

(7) Compute inter-GPU error propagation probabilities and
propagation times, using a maximum propagation window
of 5 seconds, per each day.

(8) Aggregate the per-day intra-GPU propagation data into a
single file.

(9) Aggregate the per-day inter-GPU propagation data into a
single file.

Artifact Analysis (incl. Outputs)
The command generates the following key pickle files for each
GPU-node model, saved in separate subdirectories. For instance,
files corresponding to nodes labeled as gpua in the system will be
located under the path <output_dir>/gpua/. The expected output
files include:

(1) _allfileparseddata_.pkl: Contains a list of matched and
parsed log lines, including metadata such as timestamp, date-
time, hostname, process information, and the original log
message.

(2) *\_allfileregexbookkeeping\_*.pkl: Stores the
matched regular expression patterns and corresponding
XID codes. Each entry aligns with the records in
_allfileparseddata_.pkl one-to-one.

(3) *_same_dev_id_same_node_*.pkl: Captures intra-GPU er-
ror propagation probabilities and propagation time distribu-
tions for each node.

(4) *_same_node_diff_dev_id_*.pkl: Captures inter-GPU er-
ror propagation probabilities and propagation time distribu-
tions for devices within the same node.

The count statistics generated from item (1) and (2) per GPU
XID error types are expected to match the counts in Table 1, and
the corresponding system-wide and per-node MTBEs are then com-
puted by the method specified in the paper’s methodology section
(Section 3.2). Moreover, items (3) and (4) generate the propagation
figures (Figures 5-7) for GPU memory, GPU hardware, and NVLink
errors. The error propagation probability and propagation time are
extracted by aggregating all errors of the same XID and should
match those presented in the error propagation figures. Because of
noise in error propagation analysis, we omit the edges for which
the propagation probability is less than 1%.

C.2 Computational Artifact 𝐴2

Artifact Setup (incl. Inputs)
Artifact 𝐴2 (JobDetailCollect.sh and ApplicationStatsPipeline.ipynb)
collects user job metadata using sacct and analyzes the impact of
GPU errors on user job resilience.

To prepare the runtime environment for executing 𝐴2:
(1) JobDetailCollect.sh uses the sacct command, which is

specific to systems running the Slurmworkloadmanager.We
include JobDetailCollect.sh for completeness. Systems
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not using Slurm should instead employ equivalent tools to
collect job metadata as described below, in a manner analo-
gous to using sacct.

(2) ApplicationStatsPipeline.ipynb can be executed in the
same software and hardware environment prepared for 𝐴1.

The inputs to Artifact 𝐴2 are as follows:
(1) JobDetailCollect.sh requires a bash environment and

access to the sacct command to collect user job information.
(2) ApplicationStatsPipeline.ipynb requires user jobmeta-

data extracted by JobDetailCollect.sh and the following
pickles generated by Artifact 𝐴1:
*_allfileparseddata_*.pkl and
*_allfileregexbookkeeping_*.pkl.

For systems not using sacct, equivalent tools may be used to collect
the following user job metadata from Slurm:
user,jobid,jobname,partition,state,exitcode,start,end,elapsed,

nodelist,alloctres

Here, nodelist specifies the list of nodes on which the job was
scheduled, and alloctres indicates the resources allocated to the
job. To protect user privacy and sensitive information, we are not
allowed to release the original user job records fromDelta. However,
we believe that Artifact 𝐴2 is broadly applicable to other systems
with comparable job metadata and workload management capabili-
ties.

Artifact Execution
Run the following commands to execute 𝐴2:
chmod +x ./JobDetailCollect.sh

./JobDetailCollect.sh

for collecting user job metadata using sacct;
jupyter notebook ./ApplicationStatsPipeline.ipynb

for launching the application statistic analysis Jupyter notebook.
Once the notebook is launched, set the parsed_logs_file

and regex_template_file variables to point to
allfileparseddata.pkl and allfileregexbookkeeping.pkl
pickle files generated by Artifact 𝐴1, respectively. Executing each
cell in the Jupyter notebook performs the following analysis steps:

(1) Classifies job failures and associates them with GPU XID
errors, using both the collected job metadata and GPU error
records contained in the 𝐴1 generated pickle files.

(2) Produces a statistical summary of the jobs, including GPU
count, runtime duration, failure rates, and estimated GPU
hours for ML and non-ML workloads, based on the collected
job metadata.

(3) Estimates node drain and recovery times by analyzing inter-
arrival times between jobs on each GPU node subject to GPU
errors.

Artifact Analysis (incl. Outputs)
The expected outputs of this artifact are:

(1) TXT files containing job metadata collected using sacct,
capturing job resource usage, runtime characteristics, and
execution state.

(2) JSON files containing classified job records, labeled as GPU-
failed or successfully completed, based on temporal correla-
tion with GPU error logs.

(3) A summary table of job statistics, including GPU count, run-
time (mean and P99), failure rates, and estimated GPU-hours
for ML and non-ML workloads.

(4) Bar-plot visualizations for A100 and H100 GPUs showing
the distribution of node drain durations and recovery times.

The classified job failure records generated by item (2) are ex-
pected to match the GPU error-induced failure statistics shown
in Table 2. The aggregate job metrics computed in item (3) should
match the job usage breakdowns and failure distributions in Table 3.
The node unavailability times derived in item (4) should reproduce
the distributions shown in Figure 10 for both A100 and H100 GPUs.

C.3 Computational Artifact 𝐴3

Artifact Setup (incl. Inputs)
Artifact 𝐴3 (DCGMUtilizationAnalysis.py) analyzes GPU utiliza-
tion behavior before and after a GPU XID error by process-
ing data recorded by NVIDIA’s Data Center GPU Manager
(DCGM), collected from Delta. Specifically, it examines the
DCGM_FI_DEV_GPU_UTIL field, which tracks GPU utilization over
time.

The runtime environment requirements for executing 𝐴3 are as
follows:

(1) Python 3.12.7
(2) matplotlib version 3.9.2
(3) numpy version 1.26.4
(4) pandas version 2.2.2

The inputs required by 𝐴3 are:

(1) DCGM data collected in CSV format. The file must contain
the following columns for analysis: time, gpu_id, host, and
DCGM_FI_DEV_GPU_UTIL. The DCGM_FI_DEV_GPU_UTIL field
is the identifier for GPU utilization in DCGM.

(2) GPU failure incident metadata provided as manual inputs:
incident date, host identifier, GPU ID, DCGM data start date,
and DCGM data end date.

Artifact Execution
To run Artifact 𝐴3, modify the cases variable to specify
the desired incident date, host identifier, GPU ID,
DCGM data start date, and DCGM data end date. Addition-
ally, set the DATA_PATH variable to point to the directory containing
the relevant DCGM CSV record files. Then, execute the following
command:

python3 DCGMUtilizationAnalysis.py

The filenames of the DCGM CSV files must follow the format:

<datadir>/daily/{GPU_TYPE}data_from{file_start_date}to{file_end_date
}.csv

Here, GPU_TYPE is a macro defined within the script, and
file_start_date and file_end_date must follow the
yyyy-mm-dd date format.
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𝐴3 extracts GPU utilization data from the
DCGM_FI_DEV_GPU_UTIL field in the DCGM dataset, focus-
ing on a 10-minute window surrounding the user-provided GPU
error incident (identified by Artifact 𝐴1). It then visualizes the
utilization characteristics using line plots.

Artifact Analysis (incl. Outputs)
The output data generated from this artifact are line-plots that are
similar to those in Figure 9 of the paper.

C.4 Computational Artifact 𝐴4

Artifact Setup (incl. Inputs)
Artifact𝐴4 (OverprovisioningEmulation.py) emulates the availability
of a large-scale GPU system bymodeling the effects of random node
failures, average node downtime, total job runtime, and varying
levels of overprovisioning.

𝐴4 can be executed using the same software environment as
Artifact𝐴3. It does not require any input files; all system parameters
can be configured by modifying the system parameters constants
defined at the top of the script.

Artifact Execution
Artifact 𝐴4 emulates system availability to determine the op-
timal overprovisioning cost—defined as the number of spare
GPUs—required to achieve a specified availability threshold. Specif-
ically, this script:

(1) Generates a list of unavailability intervals by simulating GPU
node failures using the failure rate derived from the MTBE
statistics computed by Artifact 𝐴1. Each failure interval has
a duration equal to the average GPU downtime estimated by
Artifact 𝐴2, and multiple GPU failure intervals may overlap.

(2) For a given overprovisioning level (i.e., the number of spare
GPUs), calculates the total duration duringwhich the number
of simultaneously failed GPUs exceeds the available spare
capacity, thereby violating the overprovisioning limit. The
total duration refers to the cumulative system downtime as
perceived from the user job’s perspective.

(3) Repeats step (2) across varying overprovisioning cost levels
to identify the minimal number of spare GPUs required to
maintain availability above the specified threshold.

To execute Artifact 𝐴4, run the following command:
python3 OverprovisioningEmulation.py

Artifact Analysis (incl. Outputs)
Artifact𝐴4 outputs the optimal overprovisioning cost based on user-
defined system resilience parameters and the specified availability
threshold. When configured with parameters consistent with those
presented in the paper, the artifact produces results that align with
the overprovisioning costs reported in Section 5.
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