
IT ALL DEPENDS
Editors: Mohamed Kaâniche, mohamed.kaaniche@laas.fr | Aad van Moorsel, aad.vanmoorsel@ncl.ac.uk

82	 September/October 2014	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/14/$31.00 © 2014 IEEE

R eliability and security tend to
be treated separately because

they appear orthogonal: reliabil-
ity focuses on accidental failures,
security on intentional attacks.
Because of the apparent dissimi-
larity between the two, tools to
detect and recover from differ-
ent classes of failures and attacks
are usually designed and imple-
mented differently. So, integrating
support for reliability and security
in a single framework is a signifi-
cant challenge.

Here, we discuss how to address
this challenge in the context of
cloud computing, for which reli-
ability and security are growing
concerns. Because cloud deploy-
ments usually consist of commod-
ity hardware and software, efficient
monitoring is key to achieving resil-
iency. Although reliability and secu-
rity monitoring might use different
types of analytics, the same sensing
infrastructure can provide inputs to
monitoring modules.

We split monitoring into two
phases: logging and auditing. Log-
ging captures data or events; it con-
stitutes the framework’s core and is
common to all monitors. Auditing
analyzes data or events; it’s imple-
mented and operated indepen-
dently by each monitor. To support
a range of auditing policies, log-
ging must capture a complete view,
including both actions and states of
target systems. It must also provide
useful, trustworthy information
regarding the captured view.

We applied these principles
when designing HyperTap, a hyper-
visor-level monitoring framework
for virtual machines (VMs). Unlike
most VM-monitoring techniques,
HyperTap employs hardware
architectural invariants (hardware
invariants, for short) to establish
the root of trust for logging. Hard-
ware invariants are properties
defined and enforced by a hard-
ware platform (for example, the x86
instruction set architecture). Addi-
tionally, HyperTap supports contin-
uous, event-driven VM monitoring,
which enables both capturing the
system state and responding rapidly
to actions of interest.

Continuous Monitoring
Traditional VM monitoring exe-
cutes in a polling manner (peri-
odically scanning the system) and
captures only the target systems’
state.1,2 Furthermore, polling mon-
itoring is vulnerable to transient
attacks and intermittent failures
that affect target systems between
checks invoked by the monitor.

In contrast, HyperTap’s continu-
ous monitoring captures a complete
view of relevant dynamic activ-
ity and the target system’s state. It
exploits the “trap-and-emulate”
mechanism in hardware-assisted
virtualization (HAV). Intel VT-x is
an HAV extension to the x86 archi-
tecture that supports running an
unmodified operating system in a
VM. It defines guest mode and host
mode execution. In guest mode, a

Building Reliable and Secure Virtual
Machines Using Architectural Invariants
Cuong Pham, Zachary J. Estrada, Phuong Cao, Zbigniew Kalbarczyk, and Ravishankar K. Iyer |
University of Illinois at Urbana-Champaign

j5iad.indd 82 9/18/2014 11:57:41 PM

Figure 1. Implementing HyperTap. (a) A HyperTap prototype with the KVM (kernel-based virtual machine) hypervisor on a Linux platform.
(b) Event types used by three auditors: guest operating system hang detection (GOSHD), hidden-rootkit detection (HRKD), and privilege
escalation detection (PED). (c) An example of GOSHD. In Figure 1c, the timeline shows the principle of operation, and the graph shows the
coverage results from fault injection experiments.

0 2010 4030 6050
Percent

8070 90 100

C
on

ta
in

er
 1

C
on

ta
in

er
 2

G
O

SH
D

H
RK

D

PE
D

H
RK

D

GOSHD

Average
HTTP server

make -j2
make -j1

Hanoi tower

Inactive time threshold

�read/task switch events

For each CPU Time

Time

OS is hung on this CPU

KVM hypervisor

Virtual
machine 1

Virtual
machine 2

Event forwarder

Linux kernel

Remote
health

checker

Event multiplexer

VM exit VM exit

�read switch events

Process switch events

I/O access events

PED HRKD GOSHD
✗ ✓ ✓

✓ ✓ ✗

✓ ✗ ✗

Host user space

(a)

(b) (c)

Detected partial hang Detected full hang

Not detected Not manifested

processor traps certain privileged
operations (for example, access to
processor control registers or I/O
instructions). It then fires VM exit
events to notify the hypervisor to
emulate those operations. Hyper-
Tap intercepts VM exit events,
records the related VM state, and
passes that information to the audi-
tor for detecting potential errors or
malicious tampering.

Hardware Invariants
Hardware invariants must hold so
that the entire software stack—for
example, the hypervisor, OS, and user
applications—can operate correctly.

We find that hardware invari-
ants, particularly the ones defined
by HAV, provide features that are
desirable for VM monitoring. The
behaviors enforced by HAV involve
primitive building blocks of essen-
tial OS operations, such as process
and application context switches,
system calls, I/O accesses, and
memory accesses. Also, you can use
hardware invariants to derive OS-
specific information—for example,

user information and firewall rules.
Details of how to intercept these
events using HAV appear else-
where.3 Furthermore, strong isola-
tion between VMs and the physical
hardware ensures hardware invari-
ants’ integrity against failures and
attacks originating in VMs.

Implementation
Figure 1a shows a HyperTap pro-
totype coupled with the KVM
(kernel-based virtual machine)
hypervisor. (The same design prin-
ciples are applicable to other HAV-
based hypervisors.) Figure 1b lists
events used to trigger auditors
implemented as part of the Hyper-
Tap prototype. In this design, each
VM can have multiple auditors run-
ning simultaneously. Each type of
auditor can have multiple instances
attached to different VMs. The core
HyperTap components, including
the event forwarder and event multi-
plexer, deliver VM exit events to the
correct auditors. This design enables
flexible deployment of auditors to
meet target VMs’ different demands.

Auditors are user processes in
auditing containers (we use Linux
containers; https://linuxcontainers.
org) running on the host OS.
Compared to the dedicated audit-
ing VMs in previous research, this
approach offers three main benefits.
First, it provides lightweight attack
and failure isolation among differ-
ent VMs’ auditors and between
auditors and the host OS. Second,
it simplifies implementation and
reduces the performance overhead
of event delivery from the event
multiplexer. Finally, it allows inte-
gration of auditors into existing
systems because the containers are
robust and compatible with most
Linux distributions.

Auditor Examples
We deployed and evaluated three
auditors as parts of HyperTap:

■■ guest operating system hang detec-
tion (GOSHD),

■■ hidden-rootkit detection (HRKD),
and

■■ privilege escalation detection (PED).

www.computer.org/security� 83

j5iad.indd 83 9/18/2014 11:57:41 PM

In our experiments, the auditors effec-
tively detected the related attacks and
failures, while causing less than 5 and
2 percent performance overhead for
disk I/O and CPU-intensive work-
loads, respectively.

Guest OS Hang Detection
An OS is in a hang state if it ceases
to schedule tasks. In multiproces-
sor systems, a partial
hang occurs when the OS
experiences a hang on a
proper subset of the avail-
able CPUs. In a full hang
state, the OS is hung on
all CPUs. Distinguishing
between partial and full
OS hangs is important
because typical OS hang detec-
tion approaches, such as heartbeats
(in which a dedicated process or
thread periodically sends an “I am
alive” message to indicate the OS’s
liveness), are effective only against
full hangs.

Detection. GOSHD tracks thread
dispatches to monitor the VM’s
OS scheduler. If a VM’s CPU (a
virtual CPU or vCPU) doesn’t
generate thread switch events
for a predefined time threshold,
GOSHD declares the guest OS
as hung on that vCPU. Because
GOSHD monitors vCPUs inde-
pendently of each other, it detects
both partial and full hangs. The
timeline in Figure 1c depicts the
detection mechanism.

Results. To evaluate GOSHD, we
injected errors in the locking mecha-
nisms that Linux uses to synchronize
access to shared data.4 The graph in
Figure 1c summarizes the results.
Of approximately 18,000 injections,
approximately 82 percent mani-
fested as hangs, of which GOSHD
detected 99.8 percent. What’s more
interesting, partial hangs were rela-
tively common: 18 percent and
26 percent of the hangs were par-
tial hangs on preemptible and

nonpreemptible OSs, respectively.
This result emphasizes the impor-
tance of partial-hang detection.

Hidden-Rootkit Detection
Rootkits are malicious computer
programs that hide other programs
from system administrators and
security-monitoring tools. Root-
kits can bypass autonomic security-

scanning tools simply because their
inspection lists don’t contain the
hidden programs.

Detection. HRKD monitors con-
text switches to inspect every pro-
cess and thread that uses CPUs,
regardless of how kernel objects are
manipulated. Each time a process or
thread is scheduled to use a CPU,
HRKD intercepts it for further
inspection. This defeats hidden mal-
ware by putting malicious programs
back on the inspection list.

Results. We tested HRKD with
nine real-world rootkits in both
Linux and Windows environments.
HRKD always discovered the hid-
den applications, regardless of their
hiding technique.

Privilege Escalation Detection
In a privilege escalation attack,
a process gains higher privileges
than originally assigned in order to
obtain unauthorized access to sys-
tem resources. Privilege escalation is
essential to many real-world attacks.

Detection. Ninja is a real-world
PED system that uses passive moni-
toring.5 It’s included in the mainline
repository for major Linux distri-
butions. It periodically scans the

process list to determine whether
a privileged (root-owned) pro-
cess has a parent process that’s
not from an authorized user. If
that process does, Ninja flags it as
privilege-escalated.

We implemented two new ver-
sions of Ninja that operate at the
hypervisor level. H-Ninja polls and
decodes VM guest memory; HT-

Ninja uses HyperTap.
To port the passive

monitoring of the origi-
nal Ninja (O-Ninja) to
HyperTap’s event-driven
monitoring, we defined
the events at which a pro-
cess is checked:

■■ the first context switch of each
process, and

■■ every I/O-related system call (for
example, open, read, write, and
lseek).

This ensures that checking occurs
before any unauthorized action (for
example, accessing a file or network).

Results. To compare the three
implementations, we crafted tran-
sient attacks, which took a very
small amount of time to avoid
detection. We then improved those
attacks by combining them with
three other attacks:

■■ Side-channel attacks determined
the exact monitoring interval so
that we could strategically time
transient attacks.

■■ Spamming attacks increased the
monitor’s workload to enlarge the
window of vulnerability in which
transient attacks could execute.

■■ Attacks combining a privilege esca-
lation attack with a rootkit made
transient attacks persistent by hid-
ing them from the monitor.

Both O-Ninja and H-Ninja
were highly vulnerable to transient
attacks. For example, our side-
channel attacks precisely predicted

A combination of continuous monitoring

and HAV can provide a foundation for

design and implementation of mechanisms

for large virtualized computing systems.

84	 IEEE Security & Privacy� September/October 2014

IT ALL DEPENDS

j5iad.indd 84 9/18/2014 11:57:42 PM

O-Ninja’s monitoring interval. Using
the predicted values, we could launch
transient attacks with an extremely
low chance of detection. When an
attack needed more time to execute,
it could employ a spamming attack.
For example, when we introduced
200 dummy processes, O-Ninja’s
detection coverage decreased to less
than 2 percent. On the other hand,
HT-Ninja wasn’t vulnerable to any of
those attacks because it used event-
driven monitoring.

T he HyperTap prototype
shows that a smart combina-

tion of continuous monitoring and
HAV can provide a foundation for
design and implementation of low-
overhead, highly efficient resiliency
mechanisms for large virtualized
computing systems, including the
cloud. HyperTap’s logging capabili-
ties can be used to implement other
reliability and security auditors.
Examples include

■■ security tools that depend on sys-
tem call interception6–8 and

■■ failure detection mechanisms
based on machine learning9 in
which the logged events and
states provide inputs to anomaly
detection algorithms.

This research has exemplified
how to achieve reliability and secu-
rity in the context of virtualized
environments. It also presents an
interesting research space to con-
tinue identifying similarities of
these two areas in a broader context.
This could lead to a common frame-
work that facilitates solutions for
problems coming from both sides.

Acknowledgments
This research was supported partly
by the US National Science Founda-
tion under grant CNS 10-18503 CISE,
the US Army Research Office under
award W911NF-13-1-0086, the US
National Security Agency under award

H98230-14-C-0141, the US Air Force
Research Laboratory and Air Force
Office of Scientific Research under
agreement FA8750-11-2-0084, an IBM
faculty award, and Infosys Corporation.
Any opinions, findings, and conclu-
sions or recommendations expressed
in this article are the authors’ and don’t
necessarily reflect the views of the
National Science Foundation or other
organizations.

References
1.	 B.D. Payne, M. de Carbone, and W.

Lee, “Secure and Flexible Monitor-
ing of Virtual Machines,” Proc. 23rd
Ann. Computer Security Applications
Conf. (ACSAC 07), IEEE, 2007, pp.
385–397.

2.	 T. Garfinkel and M. Rosenblum,
“A Virtual Machine Introspection
Based Architecture for Intrusion
Detection,” Proc. Network and Dis-
tributed Systems Security Symp.,
2003, pp. 191–206.

3.	 C. Pham et al., “Reliability and Secu-
rity Monitoring of Virtual Machines
Using Hardware Architectural
Invariants,” Proc. 44th IEEE/IFIP
Int’l Conf. Dependable Systems and
Networks, 2014, pp. 13–24.

4.	 D. Cotroneo, R. Natella, and S.
Russo, “Assessment and Improve-
ment of Hang Detection in the
Linux Operating System,” Proc.
28th IEEE Int’l Symp. Reliable Dis-
tributed Systems (SRDS 09), 2009,
pp. 288–294.

5.	 T.R. Flo, “Ninja: Privilege Escalation
Detection System for GNU/Linux,”
Ubuntu Manuals, 2005; http://
manpages.ubuntu.com/manpages/
lucid/man8/ninja.8.html.

6.	 N. Provos, “Improving Host Security
with System Call Policies,” Proc. 12th
Usenix Security Symp., 2003, p. 10.

7.	 A.P. Kosoresow and S. Hofmeyer,
“Intrusion Detection via System
Call Traces,” IEEE Software, vol. 14,
no. 5, 1997, pp. 35–42.

8.	 T. Garfinkel, “Traps and Pit-
falls: Practical Problems in Sys-
tem Call Interposition Based
Security Tools,” Proc. Network and

Distributed Systems Security Symp.,
2003, pp. 163–176.

9.	 D. Pelleg et al., “Vigilant: Out-of-
Band Detection of Failures in Vir-
tual Machines,” Operating Systems
Rev., vol. 42, no. 1, 2008, p. 26.

Cuong Pham is a graduate research
assistant at the Coordinated
Science Laboratory at the Uni-
versity of Illinois at Urbana-
Champaign. Contact him at
pham9@illinois.edu.

Zachary J. Estrada is a graduate
research assistant at the Coordi-
nated Science Laboratory at the
University of Illinois at Urbana-
Champaign. Contact him at
zestrad2@illinois.edu.

Phuong Cao is a graduate research
assistant at the Coordinated
Science Laboratory at the Univer-
sity of Illinois at Urbana-Cham-
paign. Contact him at pcao3@
illinois.edu.

Zbigniew Kalbarczyk is a research
professor at the Coordinated Sci-
ence Laboratory at the University
of Illinois at Urbana-Champaign.
Contact him at kalbarcz@
illinois.edu.

Ravishankar K. Iyer is a George
and Ann Fisher Distinguished
Professor of Engineering at the
University of Illinois at Urbana-
Champaign. Contact him at
rkiyer@illinois.edu.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

Got an idea for a future article?
Email editors Mohamed Kaâniche
(mohamed.kaaniche@laas.fr)
and Aad van Moorsel (aad.
vanmoorsel@ncl.ac.uk).

www.computer.org/security� 85

j5iad.indd 85 9/18/2014 11:57:42 PM

